(理)湖中有四個小島,它們的位置恰好近似構(gòu)成四邊形的四個頂點,若要搭3座橋?qū)⑺鼈冞B接起來,則不同的建橋方案有
 
種.
考點:計數(shù)原理的應(yīng)用
專題:排列組合
分析:由建橋的方式可以分為兩類:從一個島出發(fā)向其他三島各建一橋,一個島最多建兩座橋,利用排列的計算公式即可得出.
解答: 解:分為以下兩類:設(shè)四個小島為,A,B,C,D
第一類,從一個島出發(fā)向其他三島各建一橋,共有4種方法;
第二類,一個島最多建兩座橋,但是象下面這樣的兩個排列對應(yīng)一種建橋方法,A-B-C-D,D-C-B-A,要去掉重復(fù)的這樣,因此共有
1
2
•4!
=12種方法.
根據(jù)分類計數(shù)原理,知道共有4+12=16種.
故答案為16.
點評:熟練掌握分類加法原理和分步乘法原理及排列的計算公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=1,a2+a4=6.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)將數(shù)列{an}的前4項抽去其中一項后,剩下的三項構(gòu)成公比大于1的等比數(shù)列{bn}的前三項,記數(shù)列{bn}前n項的和為Sn,若對任意n∈N*,使得Sn≥λ成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

歐陽修《賣油翁》中寫到:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢孔入,而錢不濕.可見“行行出狀元”,賣油翁的技藝讓人嘆為觀止.若銅錢是直徑為4cm的圓,中間有邊長為1cm的正方形孔,若隨機向銅錢上滴一滴油(油滴是直徑為0.2cm的球)正好落人孔中的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x||2x-3|≤7},B={x|m+1≤x≤2m-1},若 A∪B=A,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:如果對任意一個三角形,只要它的三邊長a,b,c都在函數(shù)f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個三角形的三邊長,則稱f(x)為“保三角形函數(shù)”.若函數(shù)h(x)=lnx(x∈[M,+∞))是保三角形函數(shù),求M的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線y=x2+ax+b在點(0,b)處的切線方程是x-y+1=0,則a-b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某班進行的演講比賽中,共有5位選手參加,其中3位女生,2位男生.如果2位男生不能連著出場,且女生甲不能排在第一個,那么出場順序的排法種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解某校高中學(xué)生的近視眼發(fā)病率,在該校學(xué)生中進行分層抽樣調(diào)查,已知該校高一、高二、高三分別有學(xué)生800名、600名、500名.若高三學(xué)生共抽取25名,則高一學(xué)生共抽取
 
名.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|x-2>0},B={x|x2-1≤0},則(∁UA)∪B=( 。
A、{x|-1≤x≤1}
B、{x|-1≤x≤1或x>2}
C、{x|-1≤x≤2}
D、{x|x≤2}

查看答案和解析>>

同步練習(xí)冊答案