【題目】如圖,四棱錐中,,,,為正三角形,且.
(1)證明:直線平面;
(2)若四棱錐的體積為,是線段的中點(diǎn),求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)證明,,推出平面;
(2)以為原點(diǎn),直線、分別為軸,軸,建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo),由(1)的結(jié)論知,平面,所以則向量與向量所成的角或其補(bǔ)角與直線與平面所成的角互余,計(jì)算結(jié)果即可.
(1),且,,
又為正三角形,所以,
又,,所以,又,//,
,,所以平面.
(2)設(shè)點(diǎn)到平面的距離為,則,依題可得,以為原點(diǎn),直線、分別為軸,軸,建立空間直角坐標(biāo)系,分別求出各點(diǎn)的坐標(biāo)和向量,由(1)可知平面,故向量是平面的一個(gè)法向量,則向量與向量所成的角或其補(bǔ)角與直線與平面所成的角互余.
則,,,,則,設(shè),
由,,可得,解得,,
即,
所以,又由(1)可知,是平面的一個(gè)法向量,
∴,
所以直線與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD 中,△PAD 為等邊三角形,底面ABCD為等腰梯形,滿足AB∥CD,AD=DCAB=2,且平面PAD⊥平面ABCD.
(1)證明:BD⊥平面PAD
(2)求點(diǎn)C到平面PBD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|,關(guān)于x的不等式f(x)<3﹣|2x+1|的解集記為A.
(1)求A;
(2)已知a,b∈A,求證:f(ab)>f(a)﹣f(b).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱ABC-A1B1C1中,已知AB⊥AC,AB=2,AC=4,AA1=3,D是BC的中點(diǎn).
(1) 求直線DC1與平面A1B1D所成角的正弦值;
(2) 求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠每日生產(chǎn)某種產(chǎn)品噸,當(dāng)日生產(chǎn)的產(chǎn)品當(dāng)日銷售完畢,當(dāng)時(shí),每日的銷售額(單位:萬元)與當(dāng)日的產(chǎn)量滿足,當(dāng)日產(chǎn)量超過20噸時(shí),銷售額只能保持日產(chǎn)量20噸時(shí)的狀況.已知日產(chǎn)量為2噸時(shí)銷售額為4.5萬元,日產(chǎn)量為4噸時(shí)銷售額為8萬元.
(1)把每日銷售額表示為日產(chǎn)量的函數(shù);
(2)若每日的生產(chǎn)成本(單位:萬元),當(dāng)日產(chǎn)量為多少噸時(shí),每日的利潤(rùn)可以達(dá)到最大?并求出最大值.
(注:計(jì)算時(shí)取,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的首項(xiàng),且,.
(1)證明:是等比數(shù)列;
(2)若,中是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,寫出這三項(xiàng),若不存在,請(qǐng)說明理由;
(3)若是遞減數(shù)列,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
有時(shí)可用函數(shù)
描述學(xué)習(xí)某學(xué)科知識(shí)的掌握程度,其中x表示某學(xué)科知識(shí)的學(xué)習(xí)次數(shù)(),表示對(duì)該學(xué)科知識(shí)的掌握程度,正實(shí)數(shù)a與學(xué)科知識(shí)有關(guān).
(1) 證明:當(dāng)時(shí),掌握程度的增加量總是下降;
(2) 根據(jù)經(jīng)驗(yàn),學(xué)科甲、乙、丙對(duì)應(yīng)的a的取值區(qū)間分別為,,
.當(dāng)學(xué)習(xí)某學(xué)科知識(shí)6次時(shí),掌握程度是85%,請(qǐng)確定相應(yīng)的學(xué)科.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秉承提升學(xué)生核心素養(yǎng)的理念,學(xué)校開設(shè)以提升學(xué)生跨文化素養(yǎng)為核心的多元文化融合課程.選某藝術(shù)課程的學(xué)生唱歌、跳舞至少會(huì)一項(xiàng),已知會(huì)唱歌的有人,會(huì)跳舞的有人,現(xiàn)從中選人,設(shè)為選出的人中既會(huì)唱歌又會(huì)跳舞的人數(shù),且
(1)求選該藝術(shù)課程的學(xué)生人數(shù);
(2)寫出的概率分布列并計(jì)算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別過橢圓左、右焦點(diǎn)的動(dòng)直線相交于點(diǎn),與橢圓分別交于與不同四點(diǎn),直線的斜率滿足, 已知與軸重合時(shí), .
(1)求橢圓的方程;
(2)是否存在定點(diǎn)使得為定值,若存在,求出點(diǎn)坐標(biāo)并求出此定值,若不存在,
說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com