若函數(shù)f(x)=sinωxcosωx+1(其中ω>0)的最小正周期為2,則實(shí)數(shù)ω=
 
分析:直接利用二倍角公式化簡(jiǎn)函數(shù)f(x)=sinωxcosωx+1為函數(shù)f(x)=
1
2
sin2ωx+1,利用周期求出ω即可.
解答:解:函數(shù)f(x)=sinωxcosωx+1=
1
2
sin2ωx+1,
因?yàn)楹瘮?shù)f(x)=sinωxcosωx+1(其中ω>0)的最小正周期為2,即T=2
所以
=2
,即:ω=
π
2

故答案為:
π
2
點(diǎn)評(píng):本題是基礎(chǔ)題,考查二倍角公式的應(yīng)用,周期的求法,考查計(jì)算能力,是?碱}.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin(3x+φ)的圖象關(guān)于直線(xiàn)x=
3
對(duì)稱(chēng),則φ的最小正值等于( 。
A、
π
8
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin(x+?)是偶函數(shù),則?可取的一個(gè)值為                  ( 。
A、?=-π
B、?=-
π
2
C、?=-
π
4
D、?=-
π
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下四個(gè)命題:
①函數(shù)f(x)=sin(
π
3
-2x)的一個(gè)增區(qū)間是[
12
11π
12
];
②若函數(shù)f(x)=sin(ωx+φ)為奇函數(shù),則φ為π的整數(shù)倍;
③對(duì)于函數(shù)f(x)=tan(2x+
π
3
),若f(x1)=f(x2),則x1-x2必是π的整數(shù)倍;
④函數(shù)y=2sin(2x+
π
3
)的圖象關(guān)于點(diǎn)(
π
3
,0)對(duì)稱(chēng).
其中正確的命題是
 
.(填上正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin(ωx+φ)(|φ|<
π
2
)的圖象(部分)如圖所示,則f(x)的解析式是
f(x)=sin(
1
2
x+
π
6
f(x)=sin(
1
2
x+
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin(ωx+
π
4
)的圖象的相鄰兩條對(duì)稱(chēng)軸之間的距離等于
π
3
,則ω=
±3
±3

查看答案和解析>>

同步練習(xí)冊(cè)答案