如圖:某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(Rt△FHE,H是直角頂點)來處理污水,管道越短,鋪設管道的成本越低.設計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,米,記∠BHE=θ.
(1)試將污水凈化管道的長度L表示為θ的函數(shù),并寫出定義域;
(2)若,求此時管道的長度L;
(3)問:當θ取何值時,鋪設管道的成本最低?并求出此時管道的長度.

【答案】分析:(1)由∠BHE=θ,H是AB的中點,易得,,由污水凈化管道的長度L=EH+FH+EF,則易將污水凈化管道的長度L表示為θ的函數(shù).
(2)若,結(jié)合(1)中所得的函數(shù)解析式,代入易得管道的長度L的值.
(3)污水凈化效果最好,即為管道的長度最長,由(1)中所得的函數(shù)解析式,結(jié)合三角函數(shù)的性質(zhì),易得結(jié)論.
解答:解:(1),…(2分)…(4分)
由于,…(5分),…(6分)
(2)時,,…(8分);…(10分)
(3)=
設sinθ+cosθ=t則…(12分)
由于,所以…(14分)內(nèi)單調(diào)遞減,于是當.L的最小值米.…(15分)
答:當時,所鋪設管道的成本最低,此時管道的長度為米…(16分)
點評:本題考查的知識點是在實際問題中建立三角函數(shù)模型及解三角形,根據(jù)已知條件構(gòu)造出L關于θ的函數(shù),是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(Rt△FHE,H是直角頂點)來處理污水,管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=10
3
米,記∠BHE=θ.
(1)試將污水凈化管道的長度L表示為θ的函數(shù),并寫出定義域;
(2)若sinθ+cosθ=
2
,求此時管道的長度L;
(3)當θ取何值時,污水凈化效果最好?并求出此時管道的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•浦東新區(qū)一模)如圖:某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(Rt△FHE,H是直角頂點)來處理污水,管道越短,鋪設管道的成本越低.設計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=10
3
米,記∠BHE=θ.
(1)試將污水凈化管道的長度L表示為θ的函數(shù),并寫出定義域;
(2)若sinθ+cosθ=
3
+1
2
,求此時管道的長度L;
(3)問:當θ取何值時,鋪設管道的成本最低?并求出此時管道的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖:某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(Rt△FHE,H是直角頂點)來處理污水,管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=10
3
米,記∠BHE=θ.
(1)試將污水凈化管道的長度L表示為θ的函數(shù),并寫出定義域;
(2)問:當θ取何值時,污水凈化效果最好?并求出此時管道的長度.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省蘇州市張家港市梁豐高級中學高三(上)周日數(shù)學試卷(5)(解析版) 題型:解答題

如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(Rt△FHE,H是直角頂點)來處理污水,管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,米,記∠BHE=θ.
(1)試將污水凈化管道的長度L表示為θ的函數(shù),并寫出定義域;
(2)若,求此時管道的長度L;
(3)當θ取何值時,污水凈化效果最好?并求出此時管道的長度.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆江西省高二下學期第一次段考理科數(shù)學試卷 題型:解答題

如圖:某污水處理廠要在一個矩形污水處理池的池底水平鋪設污水凈化管道是直角頂點)來處理污水,管道越長,污水凈化效果越好.設計要求管道的接口的中點,分別落在線段上.已知米,米,記.

(1)試將污水凈化管道的長度表示為的函數(shù),并寫出定

義域;

(2)若,求此時管道的長度

(3)問:當取何值時,污水凈化效果最好?并求出此時

管道的長度.

 

 

 

查看答案和解析>>

同步練習冊答案