【題目】已知復(fù)數(shù)z=(m2+5m+6)+(m2-2m-15)i ,當(dāng)實(shí)數(shù) m 為何值時(shí),
(1)z 為實(shí)數(shù);
(2)z 為虛數(shù);
(3)z 為純虛數(shù).

【答案】
(1)

【解答】若 z 為實(shí)數(shù),則m2-2m-15=0 ,解得 m=-3 或 m=5


(2)

【解答】若 z 為虛數(shù),則 ,解得


(3)

【解答】若 z 為純虛數(shù),則 解得 m=-2 .


【解析】本題主要考查了虛數(shù)單位i及其性質(zhì);復(fù)數(shù)的基本概念,解決問(wèn)題的關(guān)鍵是根據(jù)復(fù)數(shù)的定義, (1)當(dāng) 為實(shí)數(shù)時(shí), ,(2)虛數(shù)時(shí), ;(3)純虛數(shù)時(shí), .
【考點(diǎn)精析】本題主要考查了虛數(shù)單位i及其性質(zhì)和復(fù)數(shù)的定義的相關(guān)知識(shí)點(diǎn),需要掌握虛數(shù)單位i的一些固定結(jié)論:(1)(2)(3)(4);形如的數(shù)叫做復(fù)數(shù),分別叫它的實(shí)部和虛部才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=f(x)是定義在[﹣4,4]上的偶函數(shù),且f(x)= ,則不等式(1﹣2x)g(log2x)<0的解集用區(qū)間表示為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .
(1)若不等式 恒成立,求 a 的取值范圍;
(2)當(dāng) a=2 時(shí),求:不等式 的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=f(x)是定義在a,b上的增函數(shù),其中a,b∈R且0<b<﹣a,已知y=f(x)無(wú)零點(diǎn),設(shè)函數(shù)F(x)=f2(x)+f2(﹣x),則對(duì)于F(x)有以下四個(gè)說(shuō)法:
①定義域是[﹣b,b];②是偶函數(shù);③最小值是0;④在定義域內(nèi)單調(diào)遞增.
其中正確的有(填入你認(rèn)為正確的所有序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知復(fù)數(shù)z=lg(m2﹣2m﹣2)+(m2+3m+2)i,根據(jù)以下條件分別求實(shí)數(shù)m的值或范圍.
(1)z是純虛數(shù);
(2)z對(duì)應(yīng)的點(diǎn)在復(fù)平面的第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)r是方程f(x)=0的根,選取x0作為r的初始近似值,過(guò)點(diǎn)(x0,f(x0))做曲線y=f(x)的切線l,l的方程為y=f(x0)+(x-x0),求出lx軸交點(diǎn)的橫坐標(biāo)x1=x0,稱x1r的一次近似值。過(guò)點(diǎn)(x1,f(x1))做曲線y=f(x)的切線,并求該切線與x軸交點(diǎn)的橫坐標(biāo)x2=x1,稱x2r的二次近似值。重復(fù)以上過(guò)程,得r的近似值序列,其中,,稱為rn+1次近似值,上式稱為牛頓迭代公式。已知是方程-6=0的一個(gè)根,若取x0=2作為r的初始近似值,則在保留四位小數(shù)的前提下,

A. 2.4494 B. 2.4495 C. 2.4496 D. 2.4497

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 .經(jīng)計(jì)算得
(1)由上面數(shù)據(jù),試猜想出一個(gè)一般性結(jié)論;
(2)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn), 的四個(gè)頂點(diǎn)構(gòu)成的四邊形面積為.

(1)求橢圓的方程;

(2)在橢圓上是否存在相異兩點(diǎn),使其滿足:①直線與直線的斜率互為相反數(shù);②線段的中點(diǎn)在軸上,若存在,求出的平分線與橢圓相交所得弦的弦長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知B , C是兩個(gè)定點(diǎn),|BC|=8,且△ABC的周長(zhǎng)等于18,求這個(gè)三角形的頂點(diǎn)A的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案