已知拋物線上有一點,到焦點的距離為.
(Ⅰ)求的值.
(Ⅱ)如圖,設直線與拋物線交于兩點,且,過弦的中點作垂直于軸的直線與拋物線交于點,連接.試判斷的面積是否為定值?若是,求出定值;否則,請說明理由.

(I),;(II)的面積為定值,且為

解析試題分析:(I)已知拋物線上有一點,到焦點的距離為,求的值,有焦半徑公式,,及已知可得的值,又因為在拋物線上,把代入得可求的值;(II)判斷的面積是否為定值?關鍵是寫出的面積形式,解析幾何中,求三角形的面積,常常采用分割法,分成兩個公共底平行于坐標軸,高為坐標之差來求,本題已給出,只需求出的長即可,而的橫坐標為,由此可采用設而不求,既有,得:,可得,再由,可求出關系,可得的坐標,從而得的坐標,,這樣可求出的長,得的面積,可解.
試題解析:(I)焦點,         1分
,          3分
,代入,得                  5分
(II)聯(lián)立,得:,,     6分
,                8分
=,    11分
 ,                       13分
的面積    15
分注:其他解法可參考給分.
考點:拋物線的方程,直線與拋物線的位置關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線,直線與E交于A、B兩點,且,其中O為原點.
(1)求拋物線E的方程;
(2)點C坐標為,記直線CA、CB的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓的長軸為AB,過點B的直線
軸垂直,橢圓的離心率,F為橢圓的左焦點,且

(1)求此橢圓的標準方程;
(2)設P是此橢圓上異于A,B的任意一點, 軸,H為垂足,延長HP到點Q,使得HP=PQ,連接AQ并延長交直線于點,的中點,判定直線與以為直徑的圓O位置關系。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左右兩焦點分別為,是橢圓上一點,且在軸上方,

(1)求橢圓的離心率的取值范圍;
(2)當取最大值時,過的圓的截軸的線段長為6,求橢圓的方程;
(3)在(2)的條件下,過橢圓右準線上任一點引圓的兩條切線,切點分別為.試探究直線是否過定點?若過定點,請求出該定點;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

)如圖,橢圓、、、為橢圓的頂點

(Ⅰ)若橢圓上的點到焦點距離的最大值為,最小值為,求橢圓方程;
(Ⅱ)已知:直線相交于兩點(不是橢圓的左右頂點),并滿足 試研究:直線是否過定點? 若過定點,請求出定點坐標,若不過定點,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知的頂點在橢圓上,在直線上,且
(1)當邊通過坐標原點時,求的長及的面積;
(2)當,且斜邊的長最大時,求所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知頂點在原點,焦點在軸上的拋物線過點.
(1)求拋物線的標準方程;
(2)若拋物線與直線交于、兩點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,斜率為的直線過拋物線的焦點,與拋物線交于兩點A、B, M為拋物線弧AB上的動點.

(Ⅰ)若,求拋物線的方程;
(Ⅱ)求△ABM面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在周長為定值的DDEC中,已知,動點C的運動軌跡為曲線G,且當動點C運動時,有最小值
(1)以DE所在直線為x軸,線段DE的中垂線為y軸建立直角坐標系,求曲線G的方程;
(2)直線l分別切橢圓G與圓(其中)于A、B兩點,求|AB|的取值范圍.

查看答案和解析>>

同步練習冊答案