如圖,斜率為的直線過拋物線的焦點,與拋物線交于兩點A、B, M為拋物線弧AB上的動點.
(Ⅰ)若,求拋物線的方程;
(Ⅱ)求△ABM面積的最大值.
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線上有一點,到焦點的距離為.
(Ⅰ)求及的值.
(Ⅱ)如圖,設(shè)直線與拋物線交于兩點,且,過弦的中點作垂直于軸的直線與拋物線交于點,連接.試判斷的面積是否為定值?若是,求出定值;否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)橢圓的左焦點為,離心率為,過點且與軸垂直的直線被橢圓截得的線段長為
(1)求橢圓方程;
(2)過點的直線與橢圓交于不同的兩點,當面積最大時,求
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,已知橢圓經(jīng)過點,橢圓的離心率.
(1)求橢圓的方程;
(2)過點作兩直線與橢圓分別交于相異兩點、.若的平分線與軸平行, 試探究直線的斜率是否為定值?若是, 請給予證明;若不是, 請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
矩形的中心在坐標原點,邊與軸平行,=8,=6.分別是矩形四條邊的中點,是線段的四等分點,是線段的四等分點.設(shè)直線與,與,與的交點依次為.
(1)以為長軸,以為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點都在(1)中的橢圓Q上,請以點L為例,給出證明(即證明點L在橢圓Q上).
(3)設(shè)線段的(等分點從左向右依次為,線段的等分點從上向下依次為,那么直線與哪條直線的交點一定在橢圓Q上?(寫出結(jié)果即可,此問不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,斜率為的直線過拋物線的焦點,與拋物線交于兩點A、B, M為拋物線弧AB上的動點.
(Ⅰ).若,求拋物線的方程;
(Ⅱ).求△ABM面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)把的參數(shù)方程化為極坐標方程;
(Ⅱ)求與交點的極坐標().
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com