設(shè)橢圓的左焦點(diǎn)為
,離心率為
,過(guò)點(diǎn)
且與
軸垂直的直線被橢圓截得的線段長(zhǎng)為
.
(1) 求橢圓方程.
(2) 過(guò)點(diǎn)的直線
與橢圓交于不同的兩點(diǎn)
,當(dāng)
面積最大時(shí),求
.
(1) ;(2)
.
解析試題分析:(1)由離心率得,由過(guò)點(diǎn)
且與
軸垂直的直線被橢圓截得的線段長(zhǎng)為
得
,再加橢圓中
可解出
,可得橢圓方程;(2)將直線方程設(shè)為
,交點(diǎn)設(shè)出,然后根據(jù)題意算出
的面積
,令
則
,所以
當(dāng)且僅當(dāng)
時(shí)等號(hào)成立,求出
面積最大時(shí)的
.
試題解析:(1)由題意可得,
,又
,解得
,所以橢圓方程為
(4分)
(2)根據(jù)題意可知,直線的斜率存在,故設(shè)直線
的方程為
,設(shè)
,
由方程組
消去
得關(guān)于
的方程
(6分)由直線
與橢圓相交于
兩點(diǎn),則有
,即
得
由根與系數(shù)的關(guān)系得
故 (9分)
又因?yàn)樵c(diǎn)到直線
的距離
,
故的面積
令則
,所以
當(dāng)且僅當(dāng)
時(shí)等號(hào)成立,
即時(shí),
(12分)
考點(diǎn):1.橢圓方程;2.橢圓與直線綜合;3.基本不等式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓經(jīng)過(guò)點(diǎn)
,
.
(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)
為橢圓
上的動(dòng)點(diǎn),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動(dòng)圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線 C
(Ⅰ)求C的方程;
(Ⅱ)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點(diǎn),當(dāng)圓P的半徑最長(zhǎng)時(shí),求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
點(diǎn)P是橢圓外的任意一點(diǎn),過(guò)點(diǎn)P的直線PA、PB分別與橢圓相切于A、B兩點(diǎn)。
(1)若點(diǎn)P的坐標(biāo)為,求直線
的方程。
(2)設(shè)橢圓的左焦點(diǎn)為F,請(qǐng)問(wèn):當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),是否總是相等?若是,請(qǐng)給出證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為
,且過(guò)點(diǎn)
.
(1)求橢圓的方程;
(2)若過(guò)點(diǎn)C(-1,0)且斜率為的直線
與橢圓相交于不同的兩點(diǎn)
,試問(wèn)在
軸上是否存在點(diǎn)
,使
是與
無(wú)關(guān)的常數(shù)?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線,點(diǎn)P(-1,0)是其準(zhǔn)線與
軸的焦點(diǎn),過(guò)P的直線
與拋物線C交于A、B兩點(diǎn).
(1)當(dāng)線段AB的中點(diǎn)在直線上時(shí),求直線
的方程;
(2)設(shè)F為拋物線C的焦點(diǎn),當(dāng)A為線段PB中點(diǎn)時(shí),求△FAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)是橢圓
:
上一點(diǎn),
分別為
的左右焦點(diǎn)
,
,
的面積為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),過(guò)點(diǎn)
作直線
,交橢圓
異于
的
兩點(diǎn),直線
的斜率分別為
,證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線經(jīng)過(guò)點(diǎn)
,且雙曲線
的漸近線與圓
相切.
(1)求雙曲線的方程;
(2)設(shè)是雙曲線
的右焦點(diǎn),
是雙曲線
的右支上的任意一點(diǎn),試判斷以
為直徑的圓與以雙曲線實(shí)軸為直徑的圓的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知、
分別是橢圓
:
的左、右焦點(diǎn),點(diǎn)
在直線
上,線段
的垂直平分線經(jīng)過(guò)點(diǎn)
.直線
與橢圓
交于不同的兩點(diǎn)
、
,且橢圓
上存在點(diǎn)
,使
,其中
是坐標(biāo)原點(diǎn),
是實(shí)數(shù).
(Ⅰ)求的取值范圍;
(Ⅱ)當(dāng)取何值時(shí),
的面積最大?最大面積等于多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com