已知拋物線,點(diǎn)P(-1,0)是其準(zhǔn)線與
軸的焦點(diǎn),過P的直線
與拋物線C交于A、B兩點(diǎn).
(1)當(dāng)線段AB的中點(diǎn)在直線上時,求直線
的方程;
(2)設(shè)F為拋物線C的焦點(diǎn),當(dāng)A為線段PB中點(diǎn)時,求△FAB的面積.
(1). (2)
.
解析試題分析:(1)首先確定拋物線方程為,將直線
的方程為
,(依題意
存在,且
≠0)與拋物線方程聯(lián)立,消去
得應(yīng)用中點(diǎn)坐標(biāo)公式AB中點(diǎn)的橫坐標(biāo)為
,進(jìn)一步求得直線的斜率,從而可得直線方程.應(yīng)注意直線斜率的存在性.
(2)根據(jù)中點(diǎn)坐標(biāo)公式確定得到,再利用A、B為拋物線上點(diǎn),得得到方程組求得
,
,計(jì)算得到△FAB的面積
.注意結(jié)合圖形分析,通過確定點(diǎn)的坐標(biāo),得到三角形的高線長.
試題解析:(1)因?yàn)閽佄锞€的準(zhǔn)線為,所以
,
拋物線方程為 2分
設(shè),直線
的方程為
,(依題意
存在,且
≠0)與拋物線方程聯(lián)立,消去
得
(*)
,
4分
所以AB中點(diǎn)的橫坐標(biāo)為,即
,所以
6分
(此時(*)式判別式大于零)
所以直線的方程為
7分
(2)因?yàn)锳為線段PB中點(diǎn),所以 8分
由A、B為拋物線上點(diǎn),得,
10分
解得,
11分
當(dāng)時,
;當(dāng)
時,
12分
所以△FAB的面積 14分
考點(diǎn):拋物線標(biāo)準(zhǔn)方程,直線與拋物線的位置關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心為原點(diǎn),長軸長為
,一條準(zhǔn)線的方程為
.
(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)射線與橢圓的交點(diǎn)為
,過
作傾斜角互補(bǔ)的兩條直線,分別與橢圓交于
兩點(diǎn)(
兩點(diǎn)異于
).求證:直線
的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,焦距為
,且經(jīng)過點(diǎn)
,直線
交橢圓于不同的兩點(diǎn)A,B.
(1)求的取值范圍;,
(2)若直線不經(jīng)過點(diǎn)
,求證:直線
的斜率互為相反數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的左焦點(diǎn)為
,離心率為
,過點(diǎn)
且與
軸垂直的直線被橢圓截得的線段長為
.
(1) 求橢圓方程.
(2) 過點(diǎn)的直線
與橢圓交于不同的兩點(diǎn)
,當(dāng)
面積最大時,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,橢圓C過點(diǎn),兩個焦點(diǎn)為
.
(1)求橢圓C的方程;
(2)是橢圓C上的兩個動點(diǎn),如果直線
的斜率與
的斜率互為相反數(shù),證明直線
的斜率為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若在
處取得極值,求
的值;
(2)求的單調(diào)區(qū)間;
(3)若且
,函數(shù)
,若對于
,總存在
使得
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:(
)上任意一點(diǎn)到兩焦點(diǎn)距離之和為
,離心率為
,左、右焦點(diǎn)分別為
,
,點(diǎn)
是右準(zhǔn)線上任意一點(diǎn),過
作直 線
的垂線
交橢圓于
點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)證明:直線與直線
的斜率之積是定值;
(3)點(diǎn)的縱坐標(biāo)為3,過
作動直線
與橢圓交于兩個不同點(diǎn)
,在線段
上取點(diǎn)
,滿足
,試證明點(diǎn)
恒在一定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
動點(diǎn)與定點(diǎn)
的距離和它到直線
的距離之比是常數(shù)
,記點(diǎn)
的軌跡為曲線
.
(I)求曲線的方程;
(II)設(shè)直線與曲線
交于
兩點(diǎn),
為坐標(biāo)原點(diǎn),求
面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com