已知函數(shù)f(x-1)=x2+1,x∈(-3,4),則f(x)的值域為
 
考點:函數(shù)解析式的求解及常用方法,函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:首先,設(shè)x-1=t,然后,確定函數(shù)的解析式,利用二次函數(shù)的單調(diào)性求解函數(shù)的值域.
解答: 解:令x-1=t,
∴x=t+1,
∴f(t)=(t+1)2+1,
∴f(x)=(x+1)2+1,
∵x∈(-3,4),
∴y∈[1,17).
點評:本題重點考查函數(shù)的解析式求解方法,注意換元法在求解函數(shù)解析式中的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義域為R的偶函數(shù),當(dāng)x≥0是,f(x)=x2-2x,則不等式f(x+2)<3的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

信號兵把紅旗與白旗從上到下掛在旗桿上表示信號,現(xiàn)有3面紅旗,2面白旗,把這5面旗都掛上去,可表示不同信號的種數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義某種運算S=a?b,運算原理a,b如圖所示,則函數(shù)f(x)=x?(2x-1)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①若
a
b
=
b
c
,則
a
=
c

②若
a
b
是共線向量,
b
c
是共線向量,則
a
c
是共線向量;
③若|
a
+
b
|=|
a
-
b
|,則
a
b
=0;
④若
a
,
b
均為非零向量,且方向相反,則|
a
-
b
|=|
a
|-|
b
|.
其中真命題的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算
1-tan15°
1+tan15°
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若存在區(qū)間M=[a,b],(a<b),使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的一個“穩(wěn)定區(qū)間”,現(xiàn)有四個函數(shù):
①f(x)=x2;
②f(x)=sin(
π
2
x);
③f(x)=lnx
④f(x)=x3-3x
其中存在“穩(wěn)定區(qū)間”的函數(shù)為(  )
A、①B、①②C、①②③D、①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y-1)2=2,若直線l與圓C相切,且與x軸,y軸正半軸分別交于A,B兩點,則|OA|+|OB|(O為坐標(biāo)原點)的最小值為( 。
A、4B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<m1<2<m2,且logam1=m1-1,logam2=m2-1,則實數(shù)a的取值范圍是( 。
A、2<a<3
B、0<a<1
C、1<a<2
D、3<a<4

查看答案和解析>>

同步練習(xí)冊答案