已知橢圓的右焦點(diǎn)在圓上,直線交橢圓于、兩點(diǎn).
(1)求橢圓的方程;
(2)若(為坐標(biāo)原點(diǎn)),求的值;
(3)設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為不重合),且直線軸交于點(diǎn),試問的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.
(1)
(2))
(3)的面積存在最大值.


試題分析:解(1)由題設(shè)知,圓的圓心坐標(biāo)是,半徑為,
故圓軸交與兩點(diǎn),. 1分
所以,在橢圓中,又
所以, (舍去,∵), …于是,橢圓的方程為. 4分
(2)設(shè);直線與橢圓方程聯(lián)立,
化簡并整理得.
,,

.    6分
,∴,即 
,即為定值.     8分
(3)∵,    
∴直線的方程為
,則
,
解法一:
    13分
當(dāng)且僅當(dāng)時(shí)等號(hào)成立. 故的面積存在最大值.…
(或: ,
,    

當(dāng)且僅當(dāng)時(shí)等號(hào)成立,此時(shí)的面積存在最大值.…
點(diǎn)評(píng):主要是考查了橢圓方程的求解,以及直線與橢圓位置關(guān)系的運(yùn)用,屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的焦距為4,且與橢圓x2=1有相同的離心率,斜率為k的直線l經(jīng)過點(diǎn)M(0,1),與橢圓C交于不同的兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)為 ,為橢圓的上頂點(diǎn),為坐標(biāo)原點(diǎn),且兩焦點(diǎn)和短軸的兩端構(gòu)成邊長為的正方形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在直線交與橢圓于, ,且使,使得的垂心,若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓,是長軸的左、右端點(diǎn),動(dòng)點(diǎn)滿足,聯(lián)結(jié),交橢圓于點(diǎn)

(1)當(dāng),時(shí),設(shè),求的值;
(2)若為常數(shù),探究滿足的條件?并說明理由;
(3)直接寫出為常數(shù)的一個(gè)不同于(2)結(jié)論類型的幾何條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的左焦點(diǎn)為F
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的離心率為 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的左焦點(diǎn)為,過點(diǎn)的直線交橢圓于兩點(diǎn),線段的中點(diǎn)為,的中垂線與軸和軸分別交于兩點(diǎn).

(1)若點(diǎn)的橫坐標(biāo)為,求直線的斜率;
(2)記△的面積為,△為原點(diǎn))的面積為.試問:是否存在直線,使得?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,直線l為圓的一條切線,且經(jīng)過橢圓C的右焦點(diǎn),直線l的傾斜角為,記橢圓C的離心率為e.
(1)求e的值;
(2)試判定原點(diǎn)關(guān)于l的對(duì)稱點(diǎn)是否在橢圓上,并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的左、右焦點(diǎn)分別為F1、F2,過橢圓的右焦點(diǎn)F2作一條直線l交橢圓與P、Q兩點(diǎn),則△F1PQ內(nèi)切圓面積的最大值是      

查看答案和解析>>

同步練習(xí)冊(cè)答案