【題目】已知橢圓的離心率為,橢圓的短軸端點(diǎn)與雙曲線的焦點(diǎn)重合,過點(diǎn)的直線與橢圓相交于兩點(diǎn).

(1)求橢圓的方程;

(2)若以為直徑的圓過坐標(biāo)原點(diǎn),求的值.

【答案】(1) ;(2)

【解析】

1)由離心率得到,由橢圓的短軸端點(diǎn)與雙曲線的焦點(diǎn)重合,得到,進(jìn)而可求出結(jié)果;

2)先由題意,得直線的斜率存在,設(shè)直線的方程為,聯(lián)立直線與橢圓方程,設(shè),根據(jù)韋達(dá)定理,得到,再由以為直徑的圓過坐標(biāo)原點(diǎn),得到,進(jìn)而可求出結(jié)果.

(1)由題意知

,即 ,

又雙曲線的焦點(diǎn)坐標(biāo)為,橢圓的短軸端點(diǎn)與雙曲線的焦點(diǎn)重合,

所以,∴,

故橢圓的方程為.

(2)解:由題意知直線的斜率存在,設(shè)直線的方程為

得:

得:

設(shè),則,,

因?yàn)橐?/span>為直徑的圓過坐標(biāo)原點(diǎn)

所以,

.滿足條件

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)市場分析,某綠色蔬菜加工點(diǎn)月產(chǎn)量為10噸至25噸(包含10噸和25噸),月生產(chǎn)總成本(萬元)可以看成月產(chǎn)量(噸)的二次函數(shù).當(dāng)月產(chǎn)量為10噸時(shí),月總成本為20萬元;當(dāng)月產(chǎn)量為15噸時(shí),月總成本最低為17.5萬元.

1)寫出月總成本(萬元)關(guān)于月產(chǎn)量(噸)的函數(shù)解析式;

2)若,當(dāng)月產(chǎn)量為多少噸時(shí),每噸平均成本最低?最低平均成本是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,橢圓 的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上且軸,直線軸于點(diǎn), , 為橢圓的上頂點(diǎn), 的面積為1.

(1)求橢圓的方程;

(2)過的直線交橢圓 ,且滿足,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)構(gòu)為研究學(xué)生玩電腦游戲和對待作業(yè)量態(tài)度的關(guān)系,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,所得數(shù)據(jù)如下表所示:

認(rèn)為作業(yè)多

認(rèn)為作業(yè)不多

總計(jì)

喜歡玩電腦游戲

25

15

40

不喜歡玩電腦游戲

25

35

60

總計(jì)

50

50

100

(參考公式,可能用到數(shù)據(jù):),參照以上公式和數(shù)據(jù),得到的正確結(jié)論是( )

A. 的把握認(rèn)為喜歡玩電腦游戲與對待作業(yè)量的態(tài)度有關(guān)

B. 的把握認(rèn)為喜歡玩電腦游戲與對待作業(yè)量的態(tài)度無關(guān)

C. 的把握認(rèn)為喜歡玩電腦游戲與對待作業(yè)量的態(tài)度有關(guān)

D. 的把握認(rèn)為喜歡玩電腦游戲與對待作業(yè)量的態(tài)度無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一家水果店的店長為了解本店蘋果的日銷售情況,記錄了過去30天蘋果的日銷售量(單位:kg),結(jié)果如下:

83,96107,91,7075,94,80,80,100

75,99,117,89,74,9484,85,101,87.

93,85,107,99,55,97,86,84,85104

1)請計(jì)算該水果店過去30天蘋果日銷售量的中位數(shù)、平均數(shù)、極差和標(biāo)準(zhǔn)差

2)一次進(jìn)貨太多,水果會變得不新鮮;進(jìn)貨太少,又不能滿足顧客的需求,店長希望每天的蘋果盡量新鮮,又能80%地滿足顧客的需求(在100天中,大約有80天可以滿足顧客的需求),請問,每天應(yīng)該進(jìn)多少千克蘋果?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐中,平面平面,平面平面,上任意一點(diǎn),為菱形對角線的交點(diǎn)。

(1)證明:平面平面

(2)若,當(dāng)四棱錐的體積被平面分成3:1兩部分時(shí),若二面角的大小為,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位年會進(jìn)行抽獎(jiǎng)活動(dòng),在抽獎(jiǎng)箱里裝有張印有“一等獎(jiǎng)”的卡片, 張印

有“二等獎(jiǎng)”的卡片, 3張印有“新年快樂”的卡片,抽中“一等獎(jiǎng)”獲獎(jiǎng)元, 抽中“二等獎(jiǎng)”獲獎(jiǎng)元,抽中“新年快樂”無獎(jiǎng)金.

(1)單位員工小張參加抽獎(jiǎng)活動(dòng),每次隨機(jī)抽取一張卡片,抽取后不放回.假如小張一定要將所有獲獎(jiǎng)卡片全部抽完才停止. 記表示“小張恰好抽獎(jiǎng)次停止活動(dòng)”,求的值;

(2)若單位員工小王參加抽獎(jiǎng)活動(dòng),一次隨機(jī)抽取張卡片.

表示“小王參加抽獎(jiǎng)活動(dòng)中獎(jiǎng)”,求的值;

②設(shè)表示“小王參加抽獎(jiǎng)活動(dòng)所獲獎(jiǎng)金數(shù)(單位:元)”,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)若函數(shù)處取得極值,求實(shí)數(shù)的值;并求此時(shí)上的最大值;

(2)若函數(shù)不存在零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)m>0時(shí),若對于區(qū)間[1,2]上的任意兩個(gè)實(shí)數(shù)x1,x2,且x1<x2,都有,成立,求m的最大值.

查看答案和解析>>

同步練習(xí)冊答案