【題目】已知命題函數(shù)在上是減函數(shù),命題 ,.
(1)若為假命題,求實(shí)數(shù)的取值范圍;
(2)若“或”為假命題,求實(shí)數(shù)的取值范圍.
【答案】(1);(2)
【解析】分析:第一問(wèn)利用命題的否定和命題本身是一真一假的,根據(jù)命題q是假命題,得到命題的否定是真命題,結(jié)合二次函數(shù)圖像,得到相應(yīng)的參數(shù)的取值范圍;第二問(wèn)利用“或”為假命題,則有兩個(gè)命題都是假命題,所以先求命題p為真命題時(shí)參數(shù)的范圍,之后求其補(bǔ)集,得到m的范圍,之后將兩個(gè)命題都假時(shí)參數(shù)的范圍取交集,求得結(jié)果.
詳解:(1)因?yàn)槊} ,
所以: ,,
當(dāng)為假命題時(shí),等價(jià)于為真命題,
即在上恒成立,
故,解得
所以為假命題時(shí),實(shí)數(shù)的取值范圍為.
(2)函數(shù)的對(duì)稱軸方程為,
當(dāng)函數(shù)在上是減函數(shù)時(shí),則有
即為真時(shí),實(shí)數(shù)的取值范圍為
“或”為假命題,故與同時(shí)為假,
則 ,
綜上可知,當(dāng) “或”為假命題時(shí),實(shí)數(shù)的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題函數(shù)在上是減函數(shù),命題 ,.
(1)若為假命題,求實(shí)數(shù)的取值范圍;
(2)若“”為真命題,且“或”為真命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的圖象經(jīng)過(guò)點(diǎn)P(,0)和相鄰的最低點(diǎn)為Q(,-2),則f(x)的解析式( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)P(2,1)且兩兩互相垂直的直線l1 , l2分別交橢圓 + =1于A,B與C,D.
(1)求|PA||PB|的最值;
(2)求證: + 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知x∈(0,+∞)時(shí),不等式9x﹣m3x+m+1>0恒成立,則m的取值范圍是( )
A.2﹣2 <m<2+2
B.m<2
C.m<2+2
D.m
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)0<b<1+a,若關(guān)于x的不等式(x﹣b)2>(ax)2的解集中的整數(shù)解恰有3個(gè),則( )
A.﹣1<a<0
B.0<a<1
C.1<a<3
D.3<a<6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:,圓:,動(dòng)圓與圓外切并且與圓內(nèi)切,圓心軌跡為曲線.
(1)求曲線的方程;
(2)若是曲線上關(guān)于軸對(duì)稱的兩點(diǎn),點(diǎn),直線交曲線
于另一點(diǎn),求證:直線過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ) 的部分圖象如圖所示,若 ,且f(x1)=f(x2)(x1≠x2),則f(x1+x2)=( )
A.1
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com