【題目】已知f(x)為二次函數(shù),且f(x+1)+f(x﹣1)=2x2﹣4x,

(1)求f(x)的解析式;

(2)設(shè)g(x)=f(2x)﹣m2x+1,其中x[0,1],m為常數(shù)且mR,求函數(shù)g(x)的最小值.

【答案】(1)f(x)=x2﹣2x﹣1(2)

【解析】

(1)因?yàn)楹瘮?shù)f(x)為二次函數(shù),所以可設(shè)函數(shù)的解析式為fx=ax2+bx+c,且 ,利用條件求系數(shù)即可;(2)根據(jù)(1)所求的二次函數(shù)的解析式可寫(xiě)出函數(shù)g(x)=f(2x)﹣m2x+1的解析式,整理可得,,令t=2x,可構(gòu)造關(guān)于t的二次函數(shù),進(jìn)而可求其最小值。

解:(1)設(shè)fx=ax2+bx+c,且 。

因?yàn)?/span>f(x+1)+f(x﹣1)=2x2﹣4x,

所以a(x+1)2+b(x+1)+c+a(x﹣1)2+b(x﹣1)+c=2x2﹣4x,所以2ax2+2bx+2a+2c=2x2﹣4x

故有,即a=1,b=﹣2,c=﹣1,所以f(x)=x2﹣2x﹣1;

2gx=f2x)﹣m2x+1= ,

設(shè)t=2x,t[1,2],

g(t)=t2﹣(2m+2)t﹣1=[t﹣(m+1)]2﹣(m2+2m+2),

①當(dāng)m+1>2,即m>1時(shí),g(t)=t2﹣(2m+2) t﹣1[1,2]減函數(shù),當(dāng)t=2時(shí),g(t)min=﹣4m﹣1,

②當(dāng)m+1<1,即m<0時(shí),g(t)=t2﹣(2m+2)t﹣1[1,2]增函數(shù),當(dāng)t=1時(shí),g(t)min=﹣2m﹣2,

③當(dāng)0≤m≤1時(shí),當(dāng)t=m+1時(shí),g(t)min=﹣(m2+2m+2),

綜上所述:gxmin=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象是以原點(diǎn)為頂點(diǎn)且過(guò)點(diǎn)的拋物線,反比例函數(shù)的圖象(雙曲線)與直線的兩個(gè)交點(diǎn)間的距離為8,.

1)求函數(shù)的表達(dá)式;

2)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù).

1)若的兩個(gè)不同的根,是否存在實(shí)數(shù),使成立?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

2)設(shè),函數(shù)已知方程恰有3個(gè)不同的根.

)求的取值范圍;

)設(shè)分別是這3個(gè)根中的最小值與最大值,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體的棱長(zhǎng)為1,,求:

(1)所成角;

(2)求點(diǎn)B到與平面的距離;

(3)平面與平面所成的二面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為4的正方形與矩形所在平面互相垂直,分別為的中點(diǎn),

1)求證:平面

2)求證:平面

(3)在線段上是否存在一點(diǎn),使得?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>.

1)若是單調(diào)函數(shù),且有零點(diǎn),求實(shí)數(shù)a的取值范圍;

2)若,求的值域;

3)若恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=(nN*

Ⅰ)證明當(dāng)n≥2時(shí),數(shù)列{nan}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)an;

Ⅱ)求數(shù)列{n2an}的前n項(xiàng)和Tn

Ⅲ)對(duì)任意nN*,使得 恒成立,求實(shí)數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若從裝有個(gè)紅球和個(gè)黑球的口袋內(nèi)任取個(gè)球,則下列為互斥的兩個(gè)事件是( )

A.“至少有一個(gè)黑球”與“都是黑球”B.“一個(gè)紅球也沒(méi)有”與“都是黑球”

C.“至少有一個(gè)紅球”與“都是紅球”D.“恰有個(gè)黑球”與“恰有個(gè)黑球”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家外賣(mài)公司,其“騎手”的日工資方案如下:甲公司規(guī)定底薪70元,每單抽成1元;乙公司規(guī)定底薪100元,每日前45單無(wú)抽成,超出45單的部分每單抽成6元.

假設(shè)同一公司的“騎手”一日送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名“騎手”并記錄其100天的送餐單數(shù),得到如下條形圖:

(Ⅰ)求乙公司的“騎手”一日工資y(單位:元)與送餐單數(shù)n(n∈N﹡)的函數(shù)關(guān)系;

(Ⅱ)若將頻率視為概率,回答以下問(wèn)題:

(i)記乙公司的“騎手”日工資為X(單位:元),求X的分布列和數(shù)學(xué)期望;

(ⅱ)小明擬到這兩家公司中的一家應(yīng)聘“騎手”的工作,如果僅從日工資的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他做出選擇,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案