【題目】若從裝有個(gè)紅球和個(gè)黑球的口袋內(nèi)任取個(gè)球,則下列為互斥的兩個(gè)事件是( )

A.“至少有一個(gè)黑球”與“都是黑球”B.“一個(gè)紅球也沒(méi)有”與“都是黑球”

C.“至少有一個(gè)紅球”與“都是紅球”D.“恰有個(gè)黑球”與“恰有個(gè)黑球”

【答案】D

【解析】

列舉出每個(gè)選項(xiàng)中兩個(gè)事件所包含的基本情況,利用互斥事件的定義判斷即可.

互斥的兩個(gè)事件是指不能同時(shí)發(fā)生的兩個(gè)事件,

對(duì)于A選項(xiàng),“至少有一個(gè)黑球”包含“一黑一紅和兩個(gè)球都是黑球”,A選項(xiàng)中的兩個(gè)事件不是互斥事件;

對(duì)于B選項(xiàng),“一個(gè)紅球也沒(méi)有”表示“兩球都是黑球”,B選項(xiàng)中的兩個(gè)事件是相等事件;

對(duì)于C選項(xiàng),“至少有一個(gè)紅球”包含“一黑一紅和兩個(gè)球都是紅球”,C選項(xiàng)中的兩個(gè)事件不是互斥事件;

對(duì)于D選項(xiàng),“恰有個(gè)黑球”與“恰有個(gè)黑球”不可能同時(shí)發(fā)生,這兩個(gè)事件為互斥事件.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形為平行四邊形,,中點(diǎn),

(1)求證:平面;

(2)是正三角形,且.

(Ⅰ)當(dāng)點(diǎn)在線段上什么位置時(shí),有平面

(Ⅱ)在(Ⅰ)的條件下,點(diǎn)在線段上什么位置時(shí),有平面平面?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)為二次函數(shù),且f(x+1)+f(x﹣1)=2x2﹣4x,

(1)求f(x)的解析式;

(2)設(shè)g(x)=f(2x)﹣m2x+1,其中x[0,1],m為常數(shù)且mR,求函數(shù)g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題14分)下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù):


3

4

5

6


2.5

3

4

4.5

1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;并指出x,y 是否線性相關(guān);

2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

3)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(2)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?

(參考:用最小二乘法求線性回歸方程系數(shù)公式,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是函數(shù)的切線,則的最小值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】費(fèi)馬點(diǎn)是指三角形內(nèi)到三角形三個(gè)頂點(diǎn)距離之和最小的點(diǎn)。當(dāng)三角形三個(gè)內(nèi)角均小于時(shí),費(fèi)馬點(diǎn)與三個(gè)頂點(diǎn)連線正好三等分費(fèi)馬點(diǎn)所在的周角,即該點(diǎn)所對(duì)的三角形三邊的張角相等均為。根據(jù)以上性質(zhì),函數(shù)的最小值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016·桂林高二檢測(cè))如圖所示,在四邊形ABCDAB=AD=CD=1,BD=,BDCD,將四邊形ABCD沿對(duì)角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD,則下列結(jié)論正確的是________.

(1)A′C⊥BD.(2)∠BA′C=90°.

(3)CA′與平面A′BD所成的角為30°.

(4)四面體A′-BCD的體積為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

1)判斷并證明的奇偶性.

2)證明內(nèi)單調(diào)遞減.

3,若對(duì)任意的都有,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)討論函數(shù)f (x)=x+-2的單調(diào)性;

(2)證明:函數(shù)g (x)=-lnx有極小值點(diǎn)x0,且g (x0)∈(0,).

查看答案和解析>>

同步練習(xí)冊(cè)答案