【題目】設(shè)集合A={x|0≤x≤2},B={y|1≤y≤2},若對于函數(shù)y=f(x),其定義域為A,值域為B,則這個函數(shù)的圖象可能是( )
A.
B.
C.
D.
【答案】D
【解析】解:由函數(shù)定義知A定義域為[0,1],故A不滿足題意;
B表示函數(shù)的圖象值域為[0,2],故B不滿足題意;
C函數(shù)的值域為[0,2],故C不滿足題意;
D的定義域與值域都與題目相符,故D滿足題意.
所以答案是:D.
【考點精析】通過靈活運用函數(shù)的圖象和函數(shù)的定義域及其求法,掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點組成;圖像上每一點坐標(biāo)(x,y)代表了函數(shù)的一對對應(yīng)值,他的橫坐標(biāo)x表示自變量的某個值,縱坐標(biāo)y表示與它對應(yīng)的函數(shù)值;求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負(fù)值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且a=2, . (Ⅰ)如果b=3,求c的值;
(Ⅱ)如果 ,求sinB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=100.
(1)求數(shù)列{bn}的通項bn;
(2)設(shè)數(shù)列{an}的通項an=loga(1+ ),a>0,且a≠1,記Sn是數(shù)列{an}的前n項的和.試比較Sn與 logabn+1的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)f(x)的定義域;
(2)求f(1),f(﹣1),f(2),f(﹣2);
(3)判斷并證明f(x)的奇偶性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且 =﹣ .
(1)求角B的大。
(2)若a+c=2,S△ABC= ,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=log2(1+x)+log2(1﹣x).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性,并加以說明;
(3)求f( )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M的方程為x2+(y﹣2)2=1,直線l的方程為x﹣2y=0,點P在直線l上,過P點作圓M的切線PA,PB,切點為A,B.
(1)若∠APB=60°,試求點P的坐標(biāo);
(2)若P點的坐標(biāo)為(2,1),過P作直線與圓M交于C,D兩點,當(dāng) 時,求直線CD的方程;
(3)求證:經(jīng)過A,P,M三點的圓必過定點,并求出所有定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)g(x)滿足g[g(x)]=9x+8,則g(x)是( )
A.g(x)=9x+8
B.g(x)=3x+8
C.g(x)=﹣3x﹣4
D.g(x)=3x+2或g(x)=﹣3x﹣4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com