【題目】一次函數(shù)g(x)滿足g[g(x)]=9x+8,則g(x)是( )
A.g(x)=9x+8
B.g(x)=3x+8
C.g(x)=﹣3x﹣4
D.g(x)=3x+2或g(x)=﹣3x﹣4

【答案】D
【解析】解:∵一次函數(shù)g(x),

∴設(shè)g(x)=kx+b,

∴g[g(x)]=k(kx+b)+b,

又∵g[g(x)]=9x+8,

,

解之得:

∴g(x)=3x+2或g(x)=﹣3x﹣4.

所以答案是:D.

【考點(diǎn)精析】掌握函數(shù)的表示方法是解答本題的根本,需要知道兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法;把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法;用圖像表示函數(shù)關(guān)系的方法叫做圖像法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={x|0≤x≤2},B={y|1≤y≤2},若對(duì)于函數(shù)y=f(x),其定義域?yàn)锳,值域?yàn)锽,則這個(gè)函數(shù)的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)F為拋物線E:y2=2px(p>0)的焦點(diǎn),點(diǎn)A(3,m)在拋物線E上,且|AF|=4.

(1)求拋物線E的方程;
(2)已知點(diǎn)G(﹣1,0),延長(zhǎng)AF交拋物線E于點(diǎn)B,證明:以點(diǎn)F為圓心且與直線GA相切的圓,必與直線GB相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,其中a>0.
(Ⅰ)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求f(x)在區(qū)間[1,e]上的最小值.(其中e是自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 已知a1=1,Sn+1=4an+2(n∈N*).
(1)設(shè)bn=an+1﹣2an , 證明數(shù)列{bn}是等比數(shù)列(要指出首項(xiàng)、公比);
(2)若cn=nbn , 求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)= (x∈R,且x≠﹣1),g(x)=x2+2(x∈R).
(1)求f(2),g(2)的值;
(2)求f(g(2)),g(f(2))的值;
(3)求f(g(x)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)n∈N*時(shí), ,Tn= + + +…+ . (Ⅰ)求S1 , S2 , T1 , T2;
(Ⅱ)猜想Sn與Tn的關(guān)系,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)在其定義域上既是奇函數(shù)又是減函數(shù)的是(
A.f(x)=2x
B.f(x)=xsinx
C.
D.f(x)=﹣x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x|x﹣a|+x.
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求所有的實(shí)數(shù)a,使得對(duì)任意x∈[1,4],函數(shù)f(x)的圖象恒在函數(shù)g(x)=x+4圖象的下方.

查看答案和解析>>

同步練習(xí)冊(cè)答案