用一個平面去截正方體,對于截面的邊界,有以下圖形:
①鈍角三角形;②直角梯形;③菱形;④正五邊形;⑤正六邊形。
則不可能的圖形的選項為( )
試題分析:用一個平面去截正方體,對于截面的邊界①三角形只能是直角三角形和銳角三角形
②不會是直角梯形,而是等腰梯形,或者一般梯形;③菱形,可以對稱的平行截面餓到。
④正五邊形不能得到。⑤正六邊形,過各個面的底邊的中點得到,成立,故選C.
點評:解決的關鍵是通過不同角度的作出截面來得到分析,屬于基礎題。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,二面角D—AB—E的大小為
,四邊形ABCD是邊長為2的正方形,AE=EB,F(xiàn)為CE上的點,且BF⊥平面ACE.
⑴求證AE⊥平面BCE;
⑵求二面角B—AC—E的正弦值;
⑶求點D到平面ACE的距離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)
如圖,圓錐的頂點是S,底面中心為O.OC是與底面直徑AB垂直的一條半徑,D是母線SC的中點.
(1)求證:BC與SA不可能垂直.
(2)設圓錐的高為4,異面直線AD與BC所成角的余弦值為
,求圓錐的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,在三棱柱
中,側面
底面ABC,
,
,且
為AC中點。
(I) 證明:
平面ABC;
(II) 求直線
與平面
所成角的正弦值;
(III) 在
上是否存在一點E,使得
平面
,若不存在,說明理由;若存在,確定點E的位置。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題共13分)
如圖,在四棱錐
P—
ABCD中,
PA⊥平面
ABCD,底面
ABCD為直角梯形,∠
ABC=
∠
BAD=90°,
為
AB中點,
F為
PC中點.
(I)求證:
PE⊥
BC;
(II)求二面角
C—
PE—
A的余弦值;
(III)若四棱錐
P—
ABCD的體積為4,求
AF的長.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四棱錐P—ABCD的底面是正方形,PA
底面ABCD,PA=2,
,
點E,F(xiàn)分別為棱AB,PD的中點。
(I)在現(xiàn)有圖形中,找出與AF平行的平面,并給出證明;
(II)判斷平面PCE與平面PCD是否垂直?若垂直,給出證明;若不垂直,說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知三棱柱
中,側棱垂直于底面,底面△ABC中
,
點
是
的中點。
(1)求證:
(2)求證:
(3)求
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖①,
,
分別是直角三角形
邊
和
的中點,
,沿
將三角形
折成如圖②所示的銳二面角
,若
為線段
中點.求證:
(1)直線
平面
;(6分)
(2)平面
平面
.(8分)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題14分)
如圖,四棱錐
中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E為PD
的中點
(1)求異面直線PA與CE所成角的大;
(2)(理)求二面角E-AC-D的大小。
(文)求三棱錐A-CDE的體積。
查看答案和解析>>