分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合確定z的最大值.
解答 解:作出變量x,y滿足$\left\{{\begin{array}{l}{x≤3}\\{y≤x}\\{x+y≥4}\end{array}}\right.$對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分ABC).
由z=2x-y得y=2x-z,
平移直線y=2x-z,
由圖象可知當(dāng)直線y=2x-z經(jīng)過(guò)點(diǎn)C時(shí),
直線y=2x-z的截距最小,
此時(shí)z最大.
由$\left\{\begin{array}{l}{x=3}\\{x+y=4}\end{array}\right.$,解得C(3,1)
將C(3,1)的坐標(biāo)代入目標(biāo)函數(shù)z=2x-y,
得z=6-1=5.即z=2x-y的最大值為5.
故答案為:5.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,結(jié)合目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問(wèn)題的基本方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{2}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{4}{5}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0.2 | B. | 0.3 | C. | 0.4 | D. | 0.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 36 | B. | 49 | C. | 64 | D. | 81 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com