【題目】下列命題中,正確的是________(填序號).
①若,分別是平面α,β的一個法向量,則∥α∥β;
②若,分別是平面α,β的一個法向量,則α⊥β·=0;
③若是平面α的一個法向量,與平面α共面,則·=0;
④若兩個平面的法向量不垂直,則這兩個平面一定不垂直.
【答案】②③④
【解析】
①由面面平行則法向量共線,反之則不然判斷;②由面面垂直的定義判斷;③由線在垂直的性持定理判斷④由面面垂直的定義判斷.
①中平面α,β可能平行,也可能重合,不正確,
②α⊥β,則成90°,由圓的內(nèi)接四邊形對頂角互補(bǔ)知法向量垂直,反之當(dāng)法向量垂直,則成90°,由內(nèi)接四邊形對頂角互補(bǔ),知兩平面垂直.正確;
③a與α共面,則a在平面內(nèi)或與平面平行,所以平面的法向量與直線a垂直,正確.
④若兩個平面的法向量不垂直,則成角不是90°,則由內(nèi)接圓的四邊形對頂角互補(bǔ)知兩平面所成的角不是90°,正確.
故答案為:②③④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司對新招聘的員工張某進(jìn)行綜合能力測試,共設(shè)置了A,B,C三個測試項目.假定張某通過項目A的概率為 ,通過項目B,C的概率均為a(0<a<1),且這三個測試項目能否通過相互獨立.
(1)用隨機(jī)變量X表示張某在測試中通過的項目個數(shù),求X的概率分布和數(shù)學(xué)期望E(X)(用a表示);
(2)若張某通過一個項目的概率最大,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“嫦娥奔月,舉國歡慶”,據(jù)科學(xué)計算,運(yùn)載“神六”的“長征二號”系列火箭,在點火第一秒鐘通過的路程為2 km,以后每秒鐘通過的路程都增加2 km,在達(dá)到離地面210 km的高度時,火箭與飛船分離,則這一過程大約需要的時間是______秒.
【答案】14
【解析】
設(shè)出每一秒鐘的路程為一數(shù)列,由題意可知此數(shù)列為等差數(shù)列,然后根據(jù)等差數(shù)列的前n項和的公式表示出離地面的高度,讓高度等于210列出關(guān)于n的方程,求出方程的解即可得到n的值.
設(shè)每一秒鐘通過的路程依次為a1,a2,a3,…,an,
則數(shù)列{an}是首項a1=2,公差d=2的等差數(shù)列,
由求和公式有na1+=210,即2n+n(n﹣1)=210,
解得n=14,
故答案為:14
【點睛】
在解決等差、等比數(shù)列的運(yùn)算問題時,有兩個處理思路,一是利用基本量,將多元問題簡化為一元問題,雖有一定量的運(yùn)算,但思路簡潔,目標(biāo)明確;二是利用等差、等比數(shù)列的性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),應(yīng)有意識地去應(yīng)用.但在應(yīng)用性質(zhì)時要注意性質(zhì)的前提條件,有時需要進(jìn)行適當(dāng)變形. 在解決等差、等比數(shù)列的運(yùn)算問題時,經(jīng)常采用“巧用性質(zhì)、整體考慮、減少運(yùn)算量”的方法.
【題型】填空題
【結(jié)束】
16
【題目】已知直線l:+=1,M是直線l上的一個動點,過點M作x軸和y軸的垂線,垂足分別為A,B,點P是線段AB的靠近點A的一個三等分點,點P的軌跡方程為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A、B為拋物線C:上兩點,A與B的中點的橫坐標(biāo)為2,直線AB的斜率為1.
(Ⅰ)求拋物線C的方程;
(Ⅱ)直線 交x軸于點M,交拋物線C:于點P,M關(guān)于點P的對稱點為N,連結(jié)ON并延長交C于點H.除H以外,直線MH與C是否有其他公共點?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓F1:(x+1)2+y2=1,圓F2:(x﹣1)2+y2=25,動圓P與圓F1外切并且與圓F2內(nèi)切,動圓圓心P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若曲線C與x軸的交點為A1 , A2 , 點M是曲線C上異于點A1 , A2的點,直線A1M與A2M的斜率分別為k1 , k2 , 求k1k2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四棱柱ABCD-A1B1C1D1中,底面邊長為2,側(cè)棱長為4,E,F分別是棱AB,BC的中點,EF∩BD=G.求證:平面B1EF⊥平面BDD1B1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是_____________ .(填序號)
①棱柱的面中,至少有兩個面互相平行;
②以直角三角形的一邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐;
③用一個平面去截圓錐,得到一個圓錐和一個圓臺;
④有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱;
⑤圓錐的頂點與底面圓周上任意一點的連線是圓錐的母線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=的圖象與函數(shù)y=2sinπx(﹣2≤x≤4)的圖象所有交點的橫坐標(biāo)之和等于( 。
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓,離心率,短軸,拋物線頂點在原點,以坐標(biāo)軸為對稱軸,焦點為,
(1)求橢圓和拋物線的方程;
(2)設(shè)坐標(biāo)原點為,為拋物線上第一象限內(nèi)的點,為橢圓是一點,且有,當(dāng)線段的中點在軸上時,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com