7.如圖輸入x=-2,則輸出的y值為-1.

分析 根據(jù)題意,模擬程序框圖的運行過程,即可得出輸出的結(jié)果.

解答 解:模擬執(zhí)行程序,可得程序框圖的功能是計算并輸出y=$\left\{\begin{array}{l}{{x}^{2}}&{x<-2}\\{{x}^{2}-5}&{x≥-2}\end{array}\right.$,
由于x=-2,
所以y=(-2)2-5=-1.
故答案為:-1.

點評 本題考查了程序框圖的應(yīng)用問題,解題時應(yīng)模擬程序框圖的運行過程,即可得出正確的答案,是容易題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知α為第二象限角,sinα=$\frac{3}{5}$,β為第一象限角,cosβ=$\frac{5}{13}$,則tan(2α-β)的值為$\frac{204}{253}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)空間向量$\overrightarrow{a}$=(1,2,1),$\overrightarrow$=(2,2,3),則$\overrightarrow{a}$•$\overrightarrow$=( 。
A.(2,4,3)B.(3,4,4)C.9D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若集合A={-3,0,1,2},B={-1,0,2},則A∩B={0,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.袋中裝有4個黑球和3個白球,現(xiàn)有甲、乙兩人從袋中輪流摸取一個球.甲先摸,乙后摸,然后甲再摸,…,摸取后均不放回,直到有一人摸取到白球即終止.每個球在每一次被摸出的機會都是等可能的.用X表示摸球終止時所需的摸球的次數(shù).
(1)求甲乙兩人各摸一次球就終止的概率;
(2)求隨機變量X的概率分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.等差數(shù)列{an}滿足a3+a8=2,則該數(shù)列前10項和S10=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.心理學(xué)家分析發(fā)現(xiàn)視覺和空間想象能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣方法抽取50名同學(xué)(男30,女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如表:(單位:人)
幾何題代數(shù)題總計
男同學(xué)22830
女同學(xué)81220
總計302050
(Ⅰ)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺和空間想象能力與性別有關(guān)?
附表及公式
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
(Ⅱ)現(xiàn)從選擇做幾何題的8名女同學(xué)中任意抽取2名同學(xué)對他們的答題情況進(jìn)行全程研究,記丙,丁2名女生被抽到的人數(shù)為X,求X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列各數(shù)中最小的是( 。
A.85B.210(6)C.1000(7)D.101011(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,AB是⊙O的直徑,弦BD、CA的延長線相交于點E,F(xiàn)為BA延長線上一點,且滿足BD•BE=BA•BF.求證:
(1)△ADB∽△EFB;
(2)∠DFB+∠DBC=90°.

查看答案和解析>>

同步練習(xí)冊答案