11.在△ABC中,三個式子$\overrightarrow{AB}$$•\overrightarrow{AC}$≤0,$\overrightarrow{BA}$$•\overrightarrow{BC}$≤0,$\overrightarrow{CA}$$•\overrightarrow{CB}$≤0中(  )
A.至少有一個成立B.至多有一個成立C.都不成立D.可以同時成立

分析 討論三角形的形狀為銳角、直角或鈍角三角形,即可判斷A,C錯;B正確;再由三角形的內(nèi)角和定理,即可判斷D錯.

解答 解:對于A,當△ABC為銳角三角形,則$\overrightarrow{AB}$$•\overrightarrow{AC}$>0,$\overrightarrow{BA}$$•\overrightarrow{BC}$>0,$\overrightarrow{CA}$$•\overrightarrow{CB}$>0,故A錯誤;
對于B,若△ABC為銳角三角形,則都不成立;若為直角三角形或鈍角三角形,只有一個成立,故B正確;
對于C,若為直角三角形或鈍角三角形,只有一個成立,故C錯誤;
對于D,若三個式子同時成立,則內(nèi)角之和超過180°,與內(nèi)角和為180°矛盾,故D錯誤.
故選:B.

點評 本題考查向量的數(shù)量積的定義,考查三角形的形狀和內(nèi)角和定理,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{2}}{2}$,點P(-$\sqrt{2}$,1)在該橢圓上.
(1)求橢圓C的方程;
(2)若點A,B是橢圓C上關(guān)于直線y=kx+1對稱的兩點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=-2sin(2x+φ)(-π<φ<0)的圖象關(guān)于直線x=$\frac{π}{8}$對稱.
(1)求此函數(shù)的最小正周期;
(2)求f(x)的最大值和此時相應(yīng)的x的值;
(3)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)y=$\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx(0≤x≤$\frac{π}{2}$)的值域為[$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.求函數(shù)y=log${\;}_{\frac{1}{3}}$sin(x+$\frac{π}{4}$)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.數(shù)列的通項是an=$\frac{1}{\sqrt{n}}$-$\frac{1}{\sqrt{n+1}}$,記Sn=a1+a2+…+an,求使Sn>$\frac{2}{3}$的n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在區(qū)間[0,π]上隨機地取兩個數(shù)x、y,則事件“y≤sinx”發(fā)生的概率為( 。
A.$\frac{1}{π}$B.$\frac{2}{π}$C.$\frac{1}{{π}^{2}}$D.$\frac{2}{{π}^{2}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.化簡求值:
(1)sin(x+27°)cos(18°-x)-sin(63°-x)sin(x-18°)
(2)(tan10°-$\sqrt{3}$)•$\frac{cos10°}{sin50°}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖所示,該幾何體是由一個直三棱柱ADE-BCF和一個正四棱錐P-ABCD組合而成,AD⊥AF,AE=AD=2.
(Ⅰ)證明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱錐P-ABCD的高h,使得該四棱錐的體積是三棱錐P-ABF體積的4倍.

查看答案和解析>>

同步練習冊答案