分析 利用函數(shù)性質(zhì)及對(duì)數(shù)運(yùn)算法則求解.
解答 解:∵函數(shù)$f(x)=\frac{{{e^{2x}}-1}}{{{e^{2x}}+1}}+x+1$,
∴$f(ln3)+f(ln\frac{1}{3})$=$\frac{{e}^{2ln3}-1}{{e}^{2ln3}+1}$+ln3+1+$\frac{{e}^{2ln\frac{1}{3}}-1}{{e}^{2ln\frac{1}{3}}+1}$+ln$\frac{1}{3}$+1
=$\frac{{e}^{ln9}-1}{{e}^{ln9}+1}$+$\frac{-{e}^{ln9}-1}{-{e}^{ln9}+1}$+ln3-ln3+2
=$\frac{8}{10}+\frac{-10}{-8}$+2
=$\frac{81}{20}$.
故答案為:$\frac{81}{20}$.
點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題是要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{5}{13}$ | B. | -$\frac{12}{13}$ | C. | $\frac{5}{13}$ | D. | $\frac{12}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | c<0 | B. | c>0 | C. | ac≥0 | D. | ac<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
第x月 | 1 | 2 | 3 | 4 | 5 | 6 |
枝數(shù)y(枝) | 2 | 4 | 7 | 16 | 33 | 63 |
A. | y=2x | B. | y=x2-x+2 | C. | y=2x | D. | y=log2x+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 最小項(xiàng)為-1,最大項(xiàng)為3 | B. | 最小項(xiàng)為-1,無(wú)最大項(xiàng) | ||
C. | 無(wú)最小項(xiàng),最大項(xiàng)為3 | D. | 既無(wú)最小項(xiàng),也無(wú)最大項(xiàng) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com