已知點(diǎn)P(0,5)及圓C:x2+y2+4x-12y+24=0

(I)若直線l過(guò)點(diǎn)P且被圓C截得的線段長(zhǎng)為4,求l的方程;

(II)求過(guò)P點(diǎn)的圓C的弦的中點(diǎn)D的軌跡方程

 

【答案】

(1)直線的方程為: (2) 

【解析】

試題分析:(1)根據(jù)弦長(zhǎng)和半徑,可求出圓心到直線的距離為2 當(dāng)直線的斜率存在時(shí),設(shè)所求直線的方程為: 由點(diǎn)到直線的距離公式即可求出k的值,從而得直線的方程 然后再考慮斜率不存在時(shí)的情況  (2)設(shè)過(guò)點(diǎn)P的圓C的弦的中點(diǎn)為,則 即 由此等式即可得中點(diǎn)D的軌跡方程 這屬于利用等量關(guān)系求軌跡方程的問(wèn)題 

試題解析:(1)如圖所示,,設(shè)是線段的中點(diǎn),則 

 點(diǎn)C的坐標(biāo)為(-2,6) 在中,可得 

設(shè)所求直線的方程為: 

由點(diǎn)到直線的距離公式得: 

此時(shí)直線的方程為:               4分

又直線的斜率不存在時(shí),也滿足題意,此時(shí)方程為: 

所以所求直線的方程為:            6分

(2)設(shè)過(guò)點(diǎn)P的圓C的弦的中點(diǎn)為,則 即 

所以化簡(jiǎn)得所求軌跡的方程為:     12分

考點(diǎn):1、直線與圓的方程;2、軌跡的方程

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(0,5)及圓C:x2+y2+4x-12y+24=0,若直線l過(guò)點(diǎn)P且被圓C截得的線段長(zhǎng)為4
3
,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(5,0)及圓C:x2+y2-4x-8y-5=0
(1)若直線l1為過(guò)點(diǎn)P的圓C的切線,求直線 l1的方程;
(2)若直線l2為過(guò)點(diǎn)P且被圓C截得的弦AB長(zhǎng)是8,求直線 l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(0,5)及圓C:x2+y2+4x-12y+24=0,若直線l過(guò)點(diǎn)P且被圓C截得的線段AB長(zhǎng)為4
3

(Ⅰ)求直線l的方程;
(Ⅱ)設(shè)直線l與圓C交于A、B兩點(diǎn),求以線段AB為直徑的圓Q方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:甘肅省蘭州五十五中2010屆高三第一學(xué)期期末考試數(shù)學(xué)試卷 題型:044

已知點(diǎn)P(0,5)及圓C:x2+y2+4x-12y+24=0.

(1)若直線l過(guò)點(diǎn)P且被圓C截得的線段長(zhǎng)為,求直線l的方程;

(2)求過(guò)P點(diǎn)的圓C的弦的中點(diǎn)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案