已知數(shù)列{an}是正數(shù)組成的數(shù)列,其前n項和為Sn,對于一切n∈N*均有an與2的等差中項等于Sn與2的等比中項.
(1)計算a1,a2,a3,并由此猜想{an}的通項公式an;(2)用數(shù)學歸納法證明(1)中你的猜想.
分析:(1)由題意Sn=
(an+2)2
8
,令n=1,因為s1=a1,可求出a1的值,再反復代入,分別求出a2,a3,總結出規(guī)律寫出通項公式an;
(2)根據(jù)(1)的猜想,利用歸納法進行證明,假設n=k成立,然后利用已知條件驗證n=k+1是否成立,從而求證.
解答:解:(1)由
an+2
2
=
2Sn
Sn=
(an+2)2
8
可求得a1=2,a2=6,a3=10,…(5分)
由此猜想{an}的通項公式an=4n-2(n∈N+).…(7分)
(2)證明:①當n=1時,a1=2,等式成立;…(9分)
②假設當n=k時,等式成立,即ak=4k-2,…(11分)
ak+1=Sk+1-Sk=
(ak+1+2)2
8
-
(ak+2)2
8

∴(ak+1+ak)(ak+1-ak-4)=0,又ak+1+ak≠0
∴ak+1-ak-4=0,
∴ak+1=ak+4=4k-2+4=4(k+1)-2
∴當n=k+1時,等式也成立.…(13分)
由①②可得an=4n-2(n∈N+)成立.…(15分)
點評:點評:此題主要考查數(shù)列的遞推公式和利用數(shù)學歸納法進行證明,歸納法是高考中常考的方法,幾乎每年都考,對此學生要引起注意,多加練習.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是正項等差數(shù)列,給出下列判斷:
①a2+a8=a4+a6;②a4•a6≥a2•a8;③a52≤a4•a6;④a2+a8≥2
a4a6
.其中有可能正確的是( 。
A、①④B、①②④
C、①③D、①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是正項等比數(shù)列,公比q≠1,若lga2是lga1和1+lga4的等差中項,且a1a2a3=1.
(1)求數(shù)列{an}的通項公式
(2)設cn=
1n(3-lgan)
(n∈N*)
,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是正項等比數(shù)列,若a1=32,a4=4,則數(shù)列{log2an}的前n項和Sn的最大值為
15
15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•南寧模擬)已知數(shù)列{an}是正項等比數(shù)列,若a2=2,2a3+a4=16則數(shù)列{an}的通項公式為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•桂林模擬)已知數(shù)列{an}是正項數(shù)列,其首項a1=3,前n項和為Sn,4Sn=
a
2
n
+2an+4(n≥2)

(1)求數(shù)列{an}的第二項a2及通項公式;
(2)設bn=
1
Sn
,記數(shù)列{bn}的前n項和為Kn,求證:Kn
17
21

查看答案和解析>>

同步練習冊答案