解:(Ⅰ)∵函數(shù)f(x)=x
2-2lnx,
∴函數(shù)f(x)的定義域?yàn)閧x|x>0},
=
,
由f′(x)>0,得x>1;由f′(x)<0,得0<x<1.
∴f(x)的單調(diào)增區(qū)間為(1,+∞),單調(diào)減區(qū)間為(0,1).
(Ⅱ)設(shè)g(x)=f(x)-3x+1=x
2-2lnx-3x+4,
則
=
,
∵當(dāng)x>2時(shí),g′(x)>0,
∴g(x)在(2,+∞)上為增函數(shù),
∴g(x)>g(2)=4-2ln2-6+4>0,
∴當(dāng)x>2時(shí),x
2-2lnx>3x-4,
即當(dāng)x>2時(shí),f(x)>3x-4.
分析:(Ⅰ)由函數(shù)f(x)=x
2-2lnx,知函數(shù)f(x)的定義域?yàn)閧x|x>0},
=
,由此能求出f(x)的單調(diào)區(qū)間.
(Ⅱ)設(shè)g(x)=f(x)-3x+1=x
2-2lnx-3x+4,則
=
,當(dāng)x>2時(shí),g′(x)>0,由此能夠證明當(dāng)x>2時(shí),f(x)>3x-4.
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)區(qū)間的求法,考查不等式的證明.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意導(dǎo)數(shù)性質(zhì)的靈活運(yùn)用.