【題目】已知橢圓的離心率,左頂點為.
(1)求橢圓的方程;
(2)已知為坐標原點, 是橢圓上的兩點,連接的直線平行交軸于點,證明: 成等比數(shù)列.
【答案】(1);(2)詳見解析.
【解析】【試題分析】(1)依據(jù)題設條件建立方程進行求解;(2)借助題設條件建立直線的方程,再與橢圓方程聯(lián)立,運用坐標之間的關系分析推證:
(Ⅰ)由, 得,
故橢圓的方程為.
(Ⅱ)設, , ,則,
將代入,整理得
,
,得,
,
,
.
將代入,整理得 ,
得, .
故,
所以, 成等比數(shù)列.
科目:高中數(shù)學 來源: 題型:
【題目】鹽化某廠決定采用以下方式對某塊鹽池進行開采:每天開采的量比上一天減少,10天后總量變?yōu)樵瓉淼囊话耄瑸榱司S持生態(tài)平衡,剩余總量至少要保留原來的,已知到今天為止,剩余的總量是原來的.
(1)求的值;
(2)到今天為止,工廠已經(jīng)開采了幾天?
(3)今后最多還能再開采多少天?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知三棱錐P-ABC,∠ACB=90°,CB=4,AB=20,D為AB的中點,且△PDB是正三角形,PA⊥PC.
(1)求證:平面PAC⊥平面ABC.
(2)求二面角D-AP-C的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知.
(1)對一切, 恒成立,求實數(shù)的取值范圍;
(2)當時,求函數(shù)在[m,m+3]( m>0)上的最值;
(3)證明:對一切,都有成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某電視臺在一次對收看文藝節(jié)目和新聞節(jié)目的抽樣調(diào)查中,隨機抽取了100名電視觀眾,相關的數(shù)據(jù)如表所示:
類別 | 文藝節(jié)目 | 新聞節(jié)目 | 總計 |
20至40歲 | 40 | 18 | 58 |
大于40歲 | 15 | 27 | 42 |
總計 | 55 | 45 | 100 |
(1)由表中數(shù)據(jù)直觀分析,收看新聞節(jié)目的觀眾是否與年齡有關?
(2)用分層抽樣方法在收看新聞節(jié)目的觀眾中隨機抽取5名,則大于40歲的觀眾應該抽取幾名?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= (t+1)lnx,,其中t∈R.
(1)若t=1,求證:當x>1時,f(x)>0成立;
(2)若t> ,判斷函數(shù)g(x)=x[f(x)+t+1]的零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖在△ABC中,已知點D在BC邊上,滿足AD⊥AC,cos ∠BAC=-,AB=3,BD=.
(1)求AD的長;
(2)求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設正項數(shù)列的前項和,且滿足.
(Ⅰ)計算的值,猜想的通項公式,并證明你的結(jié)論;
(Ⅱ)設是數(shù)列的前項和,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com