分析 (I)由a2S2=2,a4S4=40(n∈N*),可得${a}_{1}^{2}q(1+q)$=2,${a}_{1}^{2}$q2(1+q+q2+q3)=40,解出即可得出.
(II)由q<0,a1>0,可得q=-2,a1=1,an=(-2)n-1,Sn=$\frac{1-(-2)^{n}}{3}$.a(chǎn)nSn=$\frac{(-2)^{n-1}-(-2)^{2n-1}}{3}$,再利用等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:(I)∵a2S2=2,a4S4=40(n∈N*),
∴${a}_{1}^{2}q(1+q)$=2,${a}_{1}^{2}$q2(1+q+q2+q3)=40,
可得:q2(1+q2)=20,解得q=±2.
(II)∵q<0,a1>0,∴q=-2,a1=1,
∴an=(-2)n-1,Sn=$\frac{1-(-2)^{n}}{1-(-2)}$=$\frac{1-(-2)^{n}}{3}$.
∴anSn=$\frac{(-2)^{n-1}-(-2)^{2n-1}}{3}$,
數(shù)列{(-2)n-1}的前n項(xiàng)和=1+(-2)+(-2)2+…+(-2)n-1=$\frac{1-(-2)^{n}}{1-(-2)}$=$\frac{1-(-2)^{n}}{3}$;
數(shù)列{22n-1}的前n項(xiàng)和=2+23+…+22n-1=$\frac{2[{4}^{n}-1]}{4-1}$=$\frac{2({4}^{n}-1)}{3}$.
∴數(shù)列{anSn}的前n項(xiàng)和為Tn=$\frac{\frac{1-(-2)^{n}}{3}+\frac{2({4}^{n}-1)}{3}}{3}$=$\frac{{2}^{2n+1}-(-2)^{n}-1}{9}$.
點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=±2x | B. | y=±4x | C. | y=±$\frac{\sqrt{6}}{2}$x | D. | y=±$\frac{\sqrt{10}}{2}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-1,2} | B. | {2,4} | C. | {-3,-1} | D. | {-1,2,-3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({-∞,\frac{7}{4}}]$ | B. | $({-∞,10-\frac{5}{3}\sqrt{3}}]$ | C. | $({-∞,\frac{31}{4}}]$ | D. | $({-∞,10-\frac{7}{6}\sqrt{3}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 所有偶函數(shù)的圖象不關(guān)于y軸對(duì)稱 | |
B. | 存在偶函數(shù)的圖象關(guān)于y軸對(duì)稱 | |
C. | 存在偶函數(shù)的圖象不關(guān)于y軸對(duì)稱 | |
D. | 不存在偶函數(shù)的圖象不關(guān)于y軸對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k<32? | B. | k<65? | C. | k<64? | D. | k<31? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{a}_{7}-{a}_{2}}{5}≤\frac{{a}_{6}-{a}_{3}}{3}$ | B. | a2+a7≤a3+a6 | ||
C. | 3(a7-a6)≥a6-a3 | D. | a2+a3≥a6+a7 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com