已知點(diǎn)G是△ABC的外心,
GA
,
GB
,
GC
是三個(gè)單位向量,且2
GA
+
AB
+
AC
=
0
,如圖所示,△ABC的頂點(diǎn)B,C分別在x軸的非負(fù)半軸和y軸的非負(fù)半軸上移動(dòng),則G點(diǎn)的軌跡為( 。
A、一條線段
B、一段圓弧
C、橢圓的一部分
D、拋物線的一部分
考點(diǎn):軌跡方程
專題:計(jì)算題,直線與圓
分析:確定點(diǎn)G是BC的中點(diǎn),△ABC是直角三角形,∠A是直角,BC=2,根據(jù)△ABC的頂點(diǎn)B、C分別在x軸和y軸的非負(fù)半軸上移動(dòng),即可得出結(jié)論.
解答: 解:∵點(diǎn)G是△ABC的外心,且2
GA
+
AB
+
AC
=
0
,|
∴點(diǎn)G是BC的中點(diǎn),△ABC是直角三角形,∠A是直角
GA
,
GB
GC
是三個(gè)單位向量,
∴BC=2
∵△ABC的頂點(diǎn)B、C分別在x軸和y軸的非負(fù)半軸上移動(dòng)
∴G的軌跡是以原點(diǎn)為圓心1為半徑的圓弧,
故選:B.
點(diǎn)評(píng):本題考查向量在幾何中的應(yīng)用,解題的關(guān)鍵是判斷三角形的形狀,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
1
3
x3-
1
2
x2+
1
3
x+1在x=1處的切線的傾斜角為α,則
cos2α
sin2α-cos2α
的值是( 。
A、
8
3
B、
8
5
C、-
8
7
D、-
8
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=0.5x2-x+1.5的定義域和值域都是[1,b],求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)|
a
|=1,|
b
|=2,且
a
,
b
夾角為
π
3
,則|2
a
+
b
|=( 。
A、2
B、4
C、12
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中正確的是( 。
①若一個(gè)平面內(nèi)的任何直線都與另一個(gè)平面無(wú)公共點(diǎn),則這兩個(gè)平面平行;
②過平面外一點(diǎn)有且僅有一個(gè)平面和已知平面平行;
③過平面外兩點(diǎn)不能作平面與已知平面平行;
④若一條直線和一個(gè)平面平行,經(jīng)過這條直線的任何平面都與已知平面平行.
A、①③B、②④C、①②D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式組
x+y≤1
x-y≥-1
y≥0
所表示的平面區(qū)域?yàn)镈,若直線y=kx-3與平面區(qū)域D有公共點(diǎn),則k的取值范圍是( 。
A、[-3,3]
B、(-∞,
1
3
]∪[
1
3
,+∞)
C、(-∞,-3]∪[3,+∞)
D、[-
1
3
1
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的定義域,值域,單調(diào)遞增區(qū)間,最小值,對(duì)稱軸方程和對(duì)稱中心.
(1)f(x)=2sin(x-
π
3
);
(2)f(x)=-sin(
1
2
x+
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,為奇函數(shù)的是(  )
A、y=x+1
B、y=x2
C、y=2x
D、y=x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω,0,|φ|<
π
2
)的圖象如圖所示,為了得到g(x)=sin2x的圖象,則只需將f(x)的圖象( 。
A、向左平移
π
6
個(gè)長(zhǎng)度單位
B、向右平移
π
3
個(gè)長(zhǎng)度單位
C、向右平移
π
6
個(gè)長(zhǎng)度單位
D、向左平移
π
3
個(gè)長(zhǎng)度單位

查看答案和解析>>

同步練習(xí)冊(cè)答案