【題目】已知函數(shù),為圖象的一個(gè)對(duì)稱中心,為圖象的一條對(duì)稱軸,且在上單調(diào),則符合條件的值之和為________.
【答案】
【解析】
先由對(duì)稱中心和對(duì)稱軸求出的所有值,再結(jié)合在上單調(diào),確定的范圍,從而求出的可能值,逐個(gè)驗(yàn)證是否滿足條件,即可得出結(jié)論.
由題意可得,,
即,,所以,,
又因?yàn)?/span>在上單調(diào),
所以,即,
令,,所以當(dāng)時(shí),,
因?yàn)?/span>為圖象的一條對(duì)稱軸,
所以,,即,,
又因?yàn)?/span>,所以,此時(shí),
易知在上單調(diào)遞減,符合條件;
當(dāng)時(shí),,因?yàn)?/span>為圖象的一條對(duì)稱軸,
所以,,即,,
又因?yàn)?/span>,所以,此時(shí),
易知在單調(diào)遞增,符合條件;
當(dāng)時(shí),,因?yàn)?/span>為圖象的一條對(duì)稱軸,
所以,,即,,
又因?yàn)?/span>,所以,此時(shí),
易知在上單調(diào)遞減,符合條件.
綜上,符合條件的值之和為.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地政府為了幫助當(dāng)?shù)剞r(nóng)民脫貧致富,開(kāi)發(fā)了一種新型水果類食品,該食品生產(chǎn)成本為每件8元.當(dāng)天生產(chǎn)當(dāng)天銷售時(shí),銷售價(jià)為每件12元,當(dāng)天未賣出的則只能賣給水果罐頭廠,每件只能賣5元.每天的銷售量與當(dāng)天的氣溫有關(guān),根據(jù)市場(chǎng)調(diào)查,若氣溫不低于,則銷售5000件;若氣溫位于,則銷售3500件;若氣溫低于,則銷售2000件.為制定今年8月份的生產(chǎn)計(jì)劃,統(tǒng)計(jì)了前三年8月份的氣溫范圍數(shù)據(jù),得到下面的頻數(shù)分布表:
氣溫范圍 (單位:) | |||||
天數(shù) | 4 | 14 | 36 | 21 | 15 |
以氣溫范圍位于各區(qū)間的頻率代替氣溫范圍位于該區(qū)間的概率.
(1)求今年8月份這種食品一天銷售量(單位:件)的分布列和數(shù)學(xué)期望值;
(2)設(shè)8月份一天銷售這種食品的利潤(rùn)為(單位:元),當(dāng)8月份這種食品一天生產(chǎn)量(單位:件)為多少時(shí),的數(shù)學(xué)期望值最大,最大值為多少
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的左、右頂點(diǎn)分別為A、B,雙曲線以A、B為頂點(diǎn),焦距為,點(diǎn)P是上在第一象限內(nèi)的動(dòng)點(diǎn),直線AP與橢圓相交于另一點(diǎn)Q,線段AQ的中點(diǎn)為M,記直線AP的斜率為為坐標(biāo)原點(diǎn).
(1)求雙曲線的方程;
(2)求點(diǎn)M的縱坐標(biāo)的取值范圍;
(3)是否存在定直線使得直線BP與直線OM關(guān)于直線對(duì)稱?若存在,求直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若存在實(shí)數(shù),使得對(duì)于定義域內(nèi)的任意實(shí)數(shù),均有成立,則稱函數(shù)為“可平衡”函數(shù),有序數(shù)對(duì)稱為函數(shù)的“平衡”數(shù)對(duì).
(1)若,判斷是否為“可平衡”函數(shù),并說(shuō)明理由;
(2)若,,當(dāng)變化時(shí),求證:與的“平衡”數(shù)對(duì)相同;
(3)若,且、均為函數(shù)的“平衡”數(shù)對(duì).當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在長(zhǎng)方體中,,點(diǎn)為上的一個(gè)動(dòng)點(diǎn),平面與棱交于點(diǎn),給出下列命題:
①四棱錐的體積為;
②存在唯一的點(diǎn),使截面四邊形的周長(zhǎng)取得最小值;
③當(dāng)點(diǎn)不與,重合時(shí),在棱上均存在點(diǎn),使得平面
④存在唯一一點(diǎn),使得平面,且
其中正確的命題是_____________(填寫所有正確的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第十一屆全國(guó)少數(shù)民族傳統(tǒng)體育運(yùn)動(dòng)會(huì)在河南鄭州舉行,某項(xiàng)目比賽期間需要安排3名志愿者完成5項(xiàng)工作,每人至少完成一項(xiàng),每項(xiàng)工作由一人完成,則不同的安排方式共有多少種
A.60B.90C.120D.150
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(為參數(shù)),將曲線上所有點(diǎn)橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)不變,得到曲線,過(guò)點(diǎn)且傾斜角為的直線與曲線交于、兩點(diǎn).
(1)求曲線的參數(shù)方程和的取值范圍;
(2)求中點(diǎn)的軌跡的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線x=﹣2上有一動(dòng)點(diǎn)Q,過(guò)點(diǎn)Q作直線l,垂直于y軸,動(dòng)點(diǎn)P在l1上,且滿足(O為坐標(biāo)原點(diǎn)),記點(diǎn)P的軌跡為C.
(1)求曲線C的方程;
(2)已知定點(diǎn)M(,0),N(,0),點(diǎn)A為曲線C上一點(diǎn),直線AM交曲線C于另一點(diǎn)B,且點(diǎn)A在線段MB上,直線AN交曲線C于另一點(diǎn)D,求△MBD的內(nèi)切圓半徑r的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com