【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.

1)求曲線的普通方程及直線的直角坐標方程;

2)求曲線上的點到直線的距離的最大值與最小值.

【答案】1,2)最大值,最小值

【解析】

1)由曲線的參數(shù)方程,得兩式平方相加求解,根據(jù)直線的極坐標方程,展開有,再根據(jù)求解.

2)因為曲線C是一個半圓,利用數(shù)形結合,圓心到直線的距離減半徑即為最小值,最大值點由圖可知.

1)因為曲線的參數(shù)方程為

所以

兩式平方相加得:

因為直線的極坐標方程為.

所以

所以

2)如圖所示:

圓心C到直線的距離為:

所以圓上的點到直線的最小值為:

則點M(2,0)到直線的距離為最大值:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的圖象如圖所示,為了得到g(x)=Acosωx的圖象,只需把y=f(x)的圖象上所有的點(  )

A. 向右平移個單位長度 B. 向左平移個單位長度

C. 向右平移個單位長度 D. 向左平移個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,且其中一個焦點的坐標為.

(1)求橢圓的方程;

(2)過橢圓右焦點的直線與橢圓交于兩點,在軸上是否存在點,使得為定值?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某校組織的一次籃球定點投籃訓練中,規(guī)定每人最多投次;在處每投進一球得分,在處每投進一球得分;如果前兩次得分之和超過分即停止投籃,否則投第三次.同學在處的命中率0,在處的命中率為,該同學選擇先在處投一球,以后都在處投,用表示該同學投籃訓練結束后所得的總分,其分布列為






Z|X|X|K]

]






1)求的值;

2)求隨機變量的數(shù)學期望

3)試比較該同學選擇都在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高二年級共有800名學生參加了數(shù)學測驗(滿分150分),已知這800名學生的數(shù)學成績均不低于90分,將這800名學生的數(shù)學成績分組如:,,,得到的頻率分布直方圖如圖所示,則下列說法中正確的是( )

;②這800名學生中數(shù)學成績在110分以下的人數(shù)為160; ③這800名學生數(shù)學成績的中位數(shù)約為121.4;④這800名學生數(shù)學成績的平均數(shù)為125.

A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三個點A2,1),B3,2),D(-1,4).

1)求證:

2)要使四邊形ABCD為矩形,求點C的坐標,并求矩形ABCD兩對角線所夾銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓W:的焦距與橢圓Ω:+y2=1的短軸長相等,且W與Ω的長軸長相等,這兩個橢圓的在第一象限的交點為A,直線l經過Ω在y軸正半軸上的頂點B且與直線OA(O為坐標原點)垂直,l與Ω的另一個交點為C,l與W交于M,N兩點.

(1)求W的標準方程:

(2)求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)|xa|.

(1)a2時,解不等式f(x)≥4|x1|;

(2)f(x)≤1的解集為[0,2],(m>0,n>0),求證:m2n≥4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的三邊長分別為,,,MAB邊上的點,P是平面ABC外一點.給出下列四個命題:①若平面ABC,則三棱錐的四個面都是直角三角形;②若平面ABC,且M是邊AB的中點,則有;③若,平面ABC,則面積的最小值為;④若,P在平面ABC上的射影是內切圓的圓心,則點P到平面ABC的距離為.其中正確命題的序號是________.(把你認為正確命題的序號都填上)

查看答案和解析>>

同步練習冊答案