【題目】已知三個(gè)點(diǎn)A2,1),B3,2),D(-1,4).

1)求證:

2)要使四邊形ABCD為矩形,求點(diǎn)C的坐標(biāo),并求矩形ABCD兩對角線所夾銳角的余弦值.

【答案】(1)證明見解析;(2),余弦值.

【解析】

試題(1)因?yàn)橐阎?/span>A(2,1)B(3,2),D(1,4),可結(jié)合問題,聯(lián)系向量的坐標(biāo)及垂直的性質(zhì),進(jìn)行證明.

2)由題先設(shè)出C(x, y),再借助=,建立方程可得C點(diǎn)坐標(biāo).由點(diǎn)C的坐標(biāo),分別表示出所需的向量:=(-2,4),=(-4,2),借助向量的數(shù)量積的定義,可求出cosθ.

試題解析:(1)、

,;

2)、設(shè)C(x,y),=(x+1,y-4) ,由=,得x=0,y=5,C(0,5),

設(shè)矩形ABCD兩對角線AC,BD所夾銳角為θ,

=(-2,4)=(-4,2),=2,=2

cosθ==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋擲一個(gè)質(zhì)地均勻的骰子的試驗(yàn),事件A表示“小于5的偶數(shù)點(diǎn)出現(xiàn)”,事件B表示“不小于5的點(diǎn)數(shù)出現(xiàn)”,則一次試驗(yàn)中,事件A或事件B至少有一個(gè)發(fā)生的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足 .

1)證明: 是等比數(shù)列;

(2)令,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對兩個(gè)變量yx進(jìn)行回歸分析,則下列說法中不正確的是(

A.由樣本數(shù)據(jù)得到的回歸方程必過樣本點(diǎn)的中心.

B.殘差平方和越小的模型,擬合的效果越好.

C.用相關(guān)指數(shù)來刻畫回歸效果,的值越小,說明模型的擬合效果越好.

D.回歸分析是對具有相關(guān)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

1)求曲線的普通方程及直線的直角坐標(biāo)方程;

2)求曲線上的點(diǎn)到直線的距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐,底面正三角形.

證明

)若平面,求二面余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是函數(shù)定義域的一個(gè)子集,若存在,使得成立,則稱的一個(gè)“準(zhǔn)不動點(diǎn)”,也稱在區(qū)間上存在準(zhǔn)不動點(diǎn),已知,.

(1)若,求函數(shù)的準(zhǔn)不動點(diǎn);

(2)若函數(shù)在區(qū)間上存在準(zhǔn)不動點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).

(1)求的直角坐標(biāo)方程;

(2)若曲線截直線所得線段的中點(diǎn)坐標(biāo)為,求的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某連鎖餐廳新店開業(yè)打算舉辦一次食品交易會,招待新老顧客試吃項(xiàng)目經(jīng)理通過查閱最近5次食品交易會參會人數(shù)x(萬人)與餐廳所用原材料數(shù)量y(),得到如下統(tǒng)計(jì)表:

第一次

第二次

第三次

第四次

第五次

參會人數(shù)(萬人)

13

9

8

10

12

原材料(袋)

32

23

18

24

28

1)根據(jù)所給5組數(shù)據(jù),求出y關(guān)于x的線性回歸方程

2)已知購買原材料的費(fèi)用C()與數(shù)量()的關(guān)系為,投入使用的每袋原材料相應(yīng)的銷售收入為700元,多余的原材料只能無償返還,據(jù)悉本次交易大會大約有13萬人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測餐廳應(yīng)購買多少袋原材料才能獲得最大利潤,最大利潤是多少?(注:利潤L=銷售收入-原材料費(fèi)用)

參考公式:

參考數(shù)據(jù):.

查看答案和解析>>

同步練習(xí)冊答案