【題目】在平面直角坐標(biāo)系中,曲線過點,其參數(shù)方程為(為參數(shù),),以為極點,軸非負半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)求已知曲線和曲線交于兩點,且,求實數(shù)的值.
【答案】(1),;(2)或.
【解析】試題分析:(1)先根據(jù)加減消元法得曲線的普通方程,再根據(jù) 將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)將直線參數(shù)方程代入曲線的直角坐標(biāo)方程,由得,再利用韋達定理列方程解得實數(shù)的值.
試題解析:
解:(1)的參數(shù)方程,消參得普通方程為,
的極坐標(biāo)方程為兩邊同乘得即;
(2)將曲線的參數(shù)方程標(biāo)準化為(為參數(shù),)代入曲線得,由,得,
設(shè)對應(yīng)的參數(shù)為,由題意得即或,
當(dāng)時,,解得,
當(dāng)時,解得,
綜上:或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時,求函數(shù)在點處的切線方程;
(2)當(dāng)時,令函數(shù),若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)廈門市政府“低碳生活,綠色出行”的號召,思明區(qū)委文明辦率先全市發(fā)起“少開一天車,呵護廈門藍”綠色出行活動.“從今天開始,從我做起,力爭每周至少一天不開車,上下班或公務(wù)活動帶頭選擇步行、騎車或乘坐公交車,鼓勵拼車……”鏗鏘有力的話語,傳遞了綠色出行、低碳生活的理念.
某機構(gòu)隨機調(diào)查了本市部分成年市民某月騎車次數(shù),統(tǒng)計如下:
人數(shù) 次數(shù) 年齡 | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60] |
18歲至31歲 | 8 | 12 | 20 | 60 | 140 | 150 |
32歲至44歲 | 12 | 28 | 20 | 140 | 60 | 150 |
45歲至59歲 | 25 | 50 | 80 | 100 | 225 | 450 |
60歲及以上 | 25 | 10 | 10 | 18 | 5 | 2 |
聯(lián)合國世界衛(wèi)組織于2013年確定新的年齡分段:44歲及以下為青年人,45歲至59歲為中年人,60歲及以上為老年人.用樣本估計總體的思想,解決如下問題:
(1)估計本市一個18歲以上青年人每月騎車的平均次數(shù);
(2)若月騎車次數(shù)不少于30次者稱為“騎行愛好者”,根據(jù)這些數(shù)據(jù),能否在犯錯誤的概率不超過0.001的前提下認為“騎行愛好者”與“青年人”有關(guān)?
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某百貨商店今年春節(jié)期間舉行促銷活動,規(guī)定消費達到一定標(biāo)準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該商店經(jīng)理對春節(jié)前天參加抽獎活動的人數(shù)進行統(tǒng)計,表示第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
5 | 8 | 8 | 10 | 14 | 15 | 17 |
(Ⅰ)經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(Ⅱ)該商店規(guī)定:若抽中“一等獎”,可領(lǐng)取元購物券;抽中“二等獎”可領(lǐng)取元購物券;抽中“謝謝惠顧”,則沒有購物券.已知一次抽獎活動獲得“一等獎”的概率為,獲得“二等”的概率為.現(xiàn)有張、王兩位先生參與了本次活動,且他們是否中獎相互獨立,求此二人所獲購物券總金額的分布列及數(shù)學(xué)期望.
參考公式:,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍;
(2)若函數(shù)在上存在兩個極值點,且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某工廠的一個車間抽取某種產(chǎn)品50件,產(chǎn)品尺寸(單位:)落在各個小組的頻數(shù)分布如下表:
數(shù)據(jù)分組 | |||||||
頻數(shù) | 3 | 8 | 9 | 12 | 10 | 5 | 3 |
(1)根據(jù)頻數(shù)分布表,求該產(chǎn)品尺寸落在的概率;
(2)求這50件產(chǎn)品尺寸的樣本平均數(shù).(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)根據(jù)產(chǎn)品的頻數(shù)分布,求出產(chǎn)品尺寸中位數(shù)的估計值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓: ,其左右焦點為、,過點的直線交橢圓于, 兩點,線段的中點為, 的中垂線與軸和軸分別交于、兩點,且、、構(gòu)成等差數(shù)列.
(1)求橢圓的方程;
(2)記的面積為, (為原點)的面積為,試問:是否存在直線,使得?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著社會的發(fā)展,終身學(xué)習(xí)成為必要,工人知識要更新,學(xué)習(xí)培訓(xùn)必不可少,現(xiàn)某工廠有工人1000名,其中250名工人參加短期培訓(xùn)(稱為類工人),另外750名工人參加過長期培訓(xùn)(稱為類工人),從該工廠的工人中共抽查了100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))得到類工人生產(chǎn)能力的莖葉圖(左圖),類工人生產(chǎn)能力的頻率分布直方圖(右圖).
(1)問類、類工人各抽查了多少工人,并求出直方圖中的;
(2)求類工人生產(chǎn)能力的中位數(shù),并估計類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,由以上統(tǒng)計數(shù)據(jù)在答題卡上完成下面的列聯(lián)表,并判斷是否可以在犯錯誤概率不超過0.1%的前提下,認為生產(chǎn)能力與培訓(xùn)時間長短有關(guān).能力與培訓(xùn)時間列聯(lián)表
短期培訓(xùn) | 長期培訓(xùn) | 合計 | |
能力優(yōu)秀 | |||
能力不優(yōu)秀 | |||
合計 |
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com