【題目】已知函數(shù),.
(1)若函數(shù)有且只有一個極值點,求實數(shù)的取值范圍;
(2)對于函數(shù),,,若對于區(qū)間上的任意一個,都有,則稱函數(shù)是函數(shù),在區(qū)間上的一個“分界函數(shù)”.已知,,問是否存在實數(shù),使得函數(shù)是函數(shù),在區(qū)間上的一個“分界函數(shù)”?若存在,求實數(shù)的取值范圍;若不存在,說明理由.
【答案】(Ⅰ)(Ⅱ)
【解析】
試題分析:(Ⅰ)先求函數(shù)導數(shù):,再根據(jù)函數(shù)有且只有一個極值點,得在區(qū)間上有且只有一個零點,最后結(jié)合二次函數(shù)實根分布得,解得實數(shù)的取值范圍是;(Ⅱ)由題意得當時,恒成立,
且恒成立,即問題為恒成立問題,解決方法為轉(zhuǎn)化為對應(yīng)函數(shù)最值問題:記,利用導數(shù)研究其單調(diào)變化規(guī)律,確定其最大值:當時, 單調(diào)遞減,最大值為,由,解得;當時,最大值為正無窮大,即在區(qū)間上不恒成立,同理記,利用導數(shù)研究其單調(diào)變化規(guī)律,確定其最小值:由于,所以在區(qū)間上單調(diào)遞增,其最小值為,得.
試題解析:(1),
記,
依題意,在區(qū)間上有且只有一個零點,
∴,得實數(shù)的取值范圍是;………………………………5分
(Ⅱ)若函數(shù)是函數(shù),在區(qū)間上的一個“分界函數(shù)”,
則當時,恒成立,
且恒成立,…………………………………………6分
記,
則,
若,即:
當時,,單調(diào)遞減,且,
∴,解得;…………………………………………8分
若,即:
的圖象是開口向上的拋物線,
存在,使得,
從而,在區(qū)間上不會恒成立,…………………10分
記,
則,
∴在區(qū)間上單調(diào)遞增,
由恒成立,得,得.
綜上,當時,函數(shù)是函數(shù),在區(qū)間上的一個“分界函數(shù)”. 13分
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ()的兩個焦點為, ,離心率為,點, 在橢圓上, 在線段上,且的周長等于.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過圓: 上任意一點作橢圓的兩條切線和與圓交于點, ,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分為14分)已知定義域為R的函數(shù)是奇函數(shù).
(1)求a,b的值;
(2)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某冷飲店只出售一種飲品,該飲品每一杯的成本價為3元,售價為8元,每天售出的第20杯及之后的飲品半價出售.該店統(tǒng)計了近10天的飲品銷量,如圖所示:設(shè)為每天飲品的銷量,為該店每天的利潤.
(1)求關(guān)于的表達式;
(2)從日利潤不少于96元的幾天里任選2天,求選出的這2天日利潤都是97元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,橢圓的離心率為,是橢圓的右焦點,直線的斜率為,為坐標原點.
(I)求的方程;
(II)設(shè)過點的動直線與相交于兩點,當的面積最大時,求的方程
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示, 是某海灣旅游區(qū)的一角,為營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會決定建立面積為平分千米的三角形主題游戲樂園,并在區(qū)域建立水上餐廳.
已知, .
(1)設(shè), ,用表示,并求的最小值;
(2)設(shè)(為銳角),當最小時,用表示區(qū)域的面積,并求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為實數(shù)).
(1)當時,求函數(shù)的圖象在點處的切線方程;
(2)設(shè)函數(shù)(其中為常數(shù)),若函數(shù)在區(qū)間上不存在極值,且存在滿
足,求的取值范圍;
(3)已知,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓與圓:,圓都相內(nèi)切,即圓心的軌跡為曲線;設(shè)為曲線上的一個不在軸上的動點,為坐標原點,過點作的平行線交曲線于,兩個不同的點.
(1)求曲線的方程;
(2)試探究和的比值能否為一個常數(shù)?若能,求出這個常數(shù);若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)求的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)說明函數(shù)的圖像可由正弦曲線經(jīng)過怎樣的變化得到;
(Ⅲ)若是第二象限的角,求
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com