【題目】如圖,△ABC是邊長(zhǎng)為4的等邊三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=2.

(1)求證:AD⊥BE
(2)求平面AEC和平面BDE所成銳二面角的余弦值.

【答案】
(1)解:以O(shè)A,OC,OD為x,y,z的正方向建立直角坐標(biāo)系,

則有:

由于 ,

故AD⊥BE.


(2)解:如圖建立坐標(biāo)系,

,

設(shè)平面AEC的法向量為

所以 ,

令y1=1,則

所以 ,

設(shè)平面BDE的法向量為

所以 ,令x2=1,則y2=0,z1=﹣1

所以 ,

所以


【解析】(1)建立空間坐標(biāo)系,求出點(diǎn)的坐標(biāo),利用向量法證明直線垂直.(2)求出平面的法向量,利用向量法進(jìn)行求解即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用空間中直線與直線之間的位置關(guān)系的相關(guān)知識(shí)可以得到問題的答案,需要掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a1=3,a2+a3=36.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}對(duì)任意的正整數(shù)n都有 + + +…+ =2n+1,求b1+b2+b3+…+b2015的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=4an﹣p,其中p是不為零的常數(shù).

(1)證明:數(shù)列{an}是等比數(shù)列;

(2)當(dāng)p=3時(shí),若數(shù)列{bn}滿足bn+1=bn+an(nN*),b1=2,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四面體ABCD中,AB,BC,BD兩兩垂直,BC=BD=2,點(diǎn)E是CD的中點(diǎn),異面直線AD與BE所成角的余弦值為,則直線BE與平面ACD所成角的正弦值為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行.
(1)求A;
(2)若a= ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小型工廠安排甲、乙兩種產(chǎn)品的生產(chǎn),已知工廠生產(chǎn)甲、乙兩種產(chǎn)品每噸所需要的原材料A,B,C的數(shù)量和一周內(nèi)可用資源數(shù)量如下表所示:

原材料

甲(噸)

乙(噸)

資源數(shù)量(噸)

A

1

1

50

B

4

0

160

C

2

5

200

如果甲產(chǎn)品每噸的利潤為300元,乙產(chǎn)品每噸的利潤為200元,那么適當(dāng)安排生產(chǎn)后,工廠每周可獲得的最大利潤為______元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標(biāo)方程是ρcos2θ=sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn)M(﹣1,0),直線l與曲線C交于A、B兩點(diǎn).
(1)寫出直線l的極坐標(biāo)方程與曲線C普通方程;
(2)線段MA,MB長(zhǎng)度分別記為|MA|,|MB|,求|MA||MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正非負(fù)半軸為極軸,取相同單位長(zhǎng)度的極坐標(biāo)系中,圓的極坐標(biāo)方程為ρ=4sinθ.
(1)求直線l被圓截得的弦長(zhǎng);
(2)從極點(diǎn)作圓C的弦,求各弦中點(diǎn)的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等比數(shù)列中,

)求數(shù)列的通項(xiàng)公式;

)若數(shù)列的公比大于,且,求數(shù)列的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案