【題目】設(shè)數(shù)列{an}的前n項和為Sn,且Sn=4an﹣p,其中p是不為零的常數(shù).

(1)證明:數(shù)列{an}是等比數(shù)列;

(2)當(dāng)p=3時,若數(shù)列{bn}滿足bn+1=bn+an(nN*),b1=2,求數(shù)列{bn}的通項公式.

【答案】(1)見解析;

(2)見解析

【解析】

試題分析:(1)通過Sn=4an﹣p,利用an=Sn﹣Sn﹣1,求出,利用等比數(shù)列的定義證明數(shù)列{an}是等比數(shù)列;

(2)當(dāng)p=3時,若數(shù)列{bn}滿足bn+1=bn+an(nN*),b1=2,推出,利用bn=b1+(b2﹣b′1)+(b3﹣b2)++(bn﹣bn﹣1),求數(shù)列{bn}的通項公式.

明:(1)證:因為Sn=4an﹣p(nN*),則Sn﹣1=4an﹣1﹣p(nN*,n≥2),

所以當(dāng)n≥2時,an=Sn﹣Sn﹣1=4an﹣4an﹣1,整理得

由Sn=4an﹣p,令n=1,得a1=4a1﹣p,解得

所以an是首項為,公比為的等比數(shù)列.

(2)解:因為a1=1,則,

由bn+1=an+bn(n=1,2,),得

當(dāng)n≥2時,由累加得bn=b1+(b2﹣b′1)+(b3﹣b2)+…+(bn﹣bn﹣1)=,

當(dāng)n=1時,上式也成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(1+cosωx,1), =(1,a+ sinωx)(ω為常數(shù)且ω>0),函數(shù)f(x)= 在R上的最大值為2.
(1)求實數(shù)a的值;
(2)把函數(shù)y=f(x)的圖象向右平移 個單位,可得函數(shù)y=g(x)的圖象,若y=g(x)在[0, ]上為增函數(shù),求ω的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BA,CD的延長線相交于點E,EF∥DA,并與CB的延長線交于點F,F(xiàn)G切⊙O于G.

(1)求證:BEEF=CEBF;
(2)求證:FE=FG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)市場調(diào)查,某旅游城市在過去的一個月內(nèi)(以30天計),第t天(1≤t≤30,t∈N*)的旅游人數(shù)f(t)(單位:萬人)近似地滿足f(t)=4+ ,而人均日消費俄g(t)(單位:元)近似地滿足g(t)=
(1)試求所有游客在該城市旅游的日消費總額W(t)(單位:萬元)與時間t(1≤t≤30,t∈N*)的函數(shù)表達(dá)式;
(2)求所有游客在該城市旅游的日消費總額的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題P:R上定義運算x y=(1-x)y.不等式x1-a)x<1對任意實數(shù)x恒成立;命題Q:若不等式≥2對任意的x∈ N*恒成立.P∧ Q為假命題,P∨ Q為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某海上養(yǎng)殖基地A,接到氣象部門預(yù)報,位于基地南偏東60°方向相距20(+1)海里的海面上有一臺風(fēng)中心,影響半徑為20海里,正以每小時10海里的速度沿某一方向勻速直線前進(jìn),預(yù)計臺風(fēng)中心在基地東北方向時對基地的影響最強(qiáng)烈且(+1)小時后開始影響基地持續(xù)2小時,求臺風(fēng)移動的方向.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)以往的經(jīng)驗,某工程施工期間的將數(shù)量X(單位:mm)對工期的影響如下表:

降水量X

X<300

300≤X<700

700≤X<900

X≥900

工期延誤天數(shù)Y

0

2

6

10

歷年氣象資料表明,該工程施工期間降水量X小于300,700,900的概率分別為0.3,0.7,0.9,求:
(I)工期延誤天數(shù)Y的均值與方差;
(Ⅱ)在降水量X至少是300的條件下,工期延誤不超過6天的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長為4的等邊三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=2.

(1)求證:AD⊥BE
(2)求平面AEC和平面BDE所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線、橢圓都經(jīng)過點M(1,2),它們在x軸上有共同焦點,橢圓的對稱軸是坐標(biāo)軸,拋物線的頂點為坐標(biāo)原點.則橢圓的長軸長為_____.

查看答案和解析>>

同步練習(xí)冊答案