【題目】設函數(shù),其中的導函數(shù).

(1)令,,,求的表達式;

(2)若恒成立,求實數(shù)的取值范圍.

【答案】(1);(2).

【解析】分析:(1)求出的解析式,依次計算即可得出猜想;
(2)已知恒成立,即 恒成立.

(x≥0),

則φ′(x)==-

進行討論,求出 的最小值,令 恒成立即可;

詳解:

由題設得,g(x)= (x≥0).

(1)由已知,g1(x)=,

g2(x)=g(g1(x))=

g3(x)=,…,可得gn(x)=.

下面用數(shù)學歸納法證明.

①當n=1時,g1(x)=,結論成立.

②假設n=k時結論成立,即gk(x)=.

那么,當n=k+1時,

gk+1(x)=g(gk(x))=

即結論成立.

由①②可知, 結論對n∈N成立.

所以gn(x)=.

(2)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.

設φ(x)=ln(1+x)- (x≥0),

則φ′(x)==-,

當a≤1時,φ′(x)≥0(僅當x=0,a=1時等號成立),

∴φ(x)在[0,+∞)上單調遞增,又φ(0)=0,

∴φ(x)≥0在[0,+∞)上恒成立,

∴a≤1時,ln(1+x)≥恒成立(僅當x=0時等號成立).

當a>1時,對x∈(0,a-1]有φ′(x)<0,∴φ(x)在(0,a-1]上單調遞減,

∴φ(a-1)<φ(0)=0,

即a>1時,存在x>0,使φ(x)<0,故知ln(1+x)≥不恒成立.

綜上可知,a的取值范圍是(-∞,1].

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠今年1月、2月、3月生產(chǎn)某產(chǎn)品分別為1萬件、1.2萬件、1.3萬件,為了估計以后每月的產(chǎn)量,以這三個月的產(chǎn)量為依據(jù),用一個函數(shù)模擬該產(chǎn)品的月產(chǎn)量,與月份的關系,模擬函數(shù)可以選用二次函數(shù)或函數(shù)、、為常數(shù))已知四月份該產(chǎn)品的產(chǎn)量為1.37萬件,請問用以上哪個函數(shù)作模擬函數(shù)較好?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,,是經(jīng)過小城的東西方向與南北方向的兩條公路,小城位于小城的東北方向,直線距離.現(xiàn)規(guī)劃經(jīng)過小城修建公路(,分別在上),與,圍成三角形區(qū)域.

(1)設,,求三角形區(qū)域周長的函數(shù)解析式;

(2)現(xiàn)計劃開發(fā)周長最短的三角形區(qū)域,求該開發(fā)區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設置了相應的分類垃圾箱.為調查居民生活垃圾分類投放情況,現(xiàn)隨機抽取了該市三類垃圾箱中總計1 000噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):

廚余垃圾

可回收物

其他垃圾

廚余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

(1)試估計廚余垃圾投放正確的概率P;

(2)試估計生活垃圾投放錯誤的概率;

(3)假設廚余垃圾在廚余垃圾箱,可回收物箱,其他垃圾箱的投放量分別為a、b、c,其中a>0,abc=600. 當數(shù)據(jù)a、b、c的方差s2最大時,寫出a、b、c的值(結論不要求證明),并求出此時s2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面直角坐標系xOy中,過點P(﹣1,﹣2)的直線l的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsinθtanθ=2a(a>0),直線l與曲線C相交于不同的兩點M、N.
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)若|PM|=|MN|,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x+alnx(a>0).
(Ⅰ)當a=2時,試求函數(shù)圖線過點(1,f(1))的切線方程;
(Ⅱ)當a=1時,若關于x的方程f(x)=x+b有唯一實數(shù)解,試求實數(shù)b的取值范圍;
(Ⅲ)若函數(shù)f(x)有兩個極值點x1、x2(x1<x2),且不等式f(x1)≥mx2恒成立,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是異面直線,則以下四個命題:存在分別經(jīng)過直線的兩個互相垂直的平面;存在分別經(jīng)過直線的兩個平行平面;經(jīng)過直線有且只有一個平面垂直于直線;經(jīng)過直線有且只有一個平面平行于直線,其中正確的個數(shù)有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為選派一名學生參加全市實踐活動技能竟賽,A、B兩位同學在學校的學習基地現(xiàn)場進行加工直徑為20mm的零件測試,他倆各加工的10個零件直徑的相關數(shù)據(jù)如圖所示(單位:mm

A、B兩位同學各加工的10個零件直徑的平均數(shù)與方差列于下表;

平均數(shù)

方差

A

20

0.016

B

20

s2B

根據(jù)測試得到的有關數(shù)據(jù),試解答下列問題:

(Ⅰ)計算s2B,考慮平均數(shù)與方差,說明誰的成績好些;

(Ⅱ)考慮圖中折線走勢情況,你認為派誰去參賽較合適?請說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

直線 的參數(shù)方程為 為參數(shù)),以坐標原點 為極點, 軸正半軸為極軸建立極坐標系,曲線 的極坐標方程為 ,直線 與曲線 交于不同的兩點 ,.

(1)求實數(shù) 的取值范圍;

(2)已知 ,設點 ,若 , 成等比數(shù)列,求 的值.

查看答案和解析>>

同步練習冊答案