17.已知F1,F(xiàn)2為雙曲線C:x2-2y2=1的左右焦點(diǎn),點(diǎn)P在雙曲線C上,∠F1PF2=120°,則${S_{△P{F_1}{F_2}}}$=( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{6}$

分析 由題意可得F1 (-$\frac{\sqrt{6}}{2}$,0),F(xiàn)2($\frac{\sqrt{6}}{2}$,0),由余弦定理可得 PF1•PF2,由S=$\frac{1}{2}$PF1•PF2sin120°,求得△F1PF2的面積即為所求

解答 解:由題意可得雙曲線C:x2-2y2=1,a=1,b=$\frac{\sqrt{2}}{2}$,c=$\frac{\sqrt{6}}{2}$,
得F1 (-$\frac{\sqrt{6}}{2}$,0),F(xiàn)2($\frac{\sqrt{6}}{2}$,0),
又F1F22=6,|PF1-PF2|=2,
由余弦定理可得:
F1F22=PF12+PF22-2PF1•PF2cos120°=(PF1-PF22+3PF1•PF2=4+3PF1•PF2=6,
∴PF1•PF2=$\frac{2}{3}$
∴△F1PF2的面積S=$\frac{1}{2}$PF1•PF2sin120°=$\frac{\sqrt{3}}{6}$,
故選D.

點(diǎn)評 本題考查雙曲線的定義和標(biāo)準(zhǔn)方程,余弦定理,以及雙曲線的簡單性質(zhì)的應(yīng)用,求出PF1•PF2的值,是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若函數(shù)$f(x)=\frac{ax}{{{x^2}+b}}$的圖象如圖所示,其中,當(dāng)x=1時(shí),函數(shù)f(x)取得最大值為1,則a+b=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,則f[f(-4)]=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓C:x2+y2=36,過點(diǎn)P(2,0)作圓C的任意弦.
(1)求這些弦的中點(diǎn)Q的軌跡方程.
(2)求y+x的最小值
(3)求$\frac{y}{x+12}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知命題p:?x∈R,x2+1<2x;命題q:ax2-ax-1<0恒成立,則-4<a<0,那么( 。
A.“非p”是假命題B.“非q”是真命題C.“p且q”為真命題D.“p或q”為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知雙曲線C1與橢圓C2:$\frac{y^2}{36}+\frac{x^2}{27}$=0有相同焦點(diǎn),且經(jīng)過點(diǎn)($\sqrt{15}$,4).
(1)求此雙曲線C1的標(biāo)準(zhǔn)方程;
(2)求與C1共漸近線且兩頂點(diǎn)間的距離為4的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若雙曲線$\frac{x^2}{a^2}-{y^2}=1({a>0})$的一個(gè)焦點(diǎn)為(2,0),則a為( 。
A.$\sqrt{5}$B.$\sqrt{3}$C.5D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,已知AB=3,BC=4,AC=$\sqrt{13}$.
(1)求角B的大。
(2)若D是BC的中點(diǎn),求中線AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在平面直角坐標(biāo)系xOy中,以點(diǎn)(1,0)為圓心且與直線mx-y-2m-1=0(m∈R)相切的所有圓中,半徑最大的圓的標(biāo)準(zhǔn)方程為( 。
A.(x-1)2+y2=1B.(x-1)2+y2=4C.(x-1)2+y2=2D.(x-1)2+y2=$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案