8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,則f[f(-4)]=4.

分析 由已知先求出f(-4)=($\frac{1}{2}$)-4=16,從而f[f(-4)]=f(16),由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,
∴f(-4)=($\frac{1}{2}$)-4=16,
f[f(-4)]=f(16)=$\sqrt{16}$=4.
故答案為:4.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.計算:
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$+($\frac{1}{10}$)-20+(-$\frac{27}{8}$)${\;}^{\frac{1}{3}}$;
(2)$\frac{1}{2}$lg25+lg2-log29×log32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$的焦點為$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$、$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$為橢圓上的一點,$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,則△F1PF2的面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=sin(ωx+ϕ),(ω>0,0<ϕ<π)的最小正周期是π,將函數(shù)f(x)圖象向左平移$\frac{π}{3}$個單位長度后所得的函數(shù)過點$({-\frac{π}{6},1})$,則函數(shù)f(x)=sin(ωx+ϕ)(  )
A.在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$上單調(diào)遞減B.在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$上單調(diào)遞增
C.在區(qū)間$[{-\frac{π}{3},\frac{π}{6}}]$上單調(diào)遞減D.在區(qū)間$[{-\frac{π}{3},\frac{π}{6}}]$上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知四組函數(shù):
①f(x)=x,g(x)=($\sqrt{x}$)2;
②f(x)=x,g(x)=$\root{3}{{x}^{3}}$;
③f(n)=2n-1,g(n)=2n+1(n∈N);
④f(x)=x2-2x-1,g(t)=t2-2t-1.
其中是同一函數(shù)的( 。
A.沒有B.僅有②C.②④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.關(guān)于x的不等式ax2+bx+2>0的解集為{x|-1<x<2}則關(guān)于x的不等式bx2-ax-2>0的解集為(-2,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若tan100°=a,則用a表示cos10°的結(jié)果為( 。
A.$-\frac{1}{a}$B.$-\frac{a}{{\sqrt{1+{a^2}}}}$C.$\frac{a}{{\sqrt{1+{a^2}}}}$D.$-\frac{1}{{\sqrt{1+{a^2}}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知F1,F(xiàn)2為雙曲線C:x2-2y2=1的左右焦點,點P在雙曲線C上,∠F1PF2=120°,則${S_{△P{F_1}{F_2}}}$=( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.某工廠在兩年內(nèi)生產(chǎn)產(chǎn)值的月增長率都是a,則第二年某月的生產(chǎn)產(chǎn)值與第一年相應(yīng)月相比增長了(1+a)12-1.

查看答案和解析>>

同步練習(xí)冊答案