分析 由已知先求出f(-4)=($\frac{1}{2}$)-4=16,從而f[f(-4)]=f(16),由此能求出結(jié)果.
解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,
∴f(-4)=($\frac{1}{2}$)-4=16,
f[f(-4)]=f(16)=$\sqrt{16}$=4.
故答案為:4.
點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$上單調(diào)遞減 | B. | 在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$上單調(diào)遞增 | ||
C. | 在區(qū)間$[{-\frac{π}{3},\frac{π}{6}}]$上單調(diào)遞減 | D. | 在區(qū)間$[{-\frac{π}{3},\frac{π}{6}}]$上單調(diào)遞增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 沒有 | B. | 僅有② | C. | ②④ | D. | ②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{a}$ | B. | $-\frac{a}{{\sqrt{1+{a^2}}}}$ | C. | $\frac{a}{{\sqrt{1+{a^2}}}}$ | D. | $-\frac{1}{{\sqrt{1+{a^2}}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{3}}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com