8.已知數(shù)列{an}滿足Sn=n-an
(1)求證:數(shù)列{an-1}是等比數(shù)列;
(2)求an

分析 (1)由已知可得Sn+1=n+1-an+1,和已知式子兩式相減可得an+1=$\frac{1}{2}$+$\frac{1}{2}$an,代入$\frac{{a}_{n+1}-1}{{a}_{n}-1}$化簡可得;
(2)由Sn=n-an可得a1,進而可得a1-1,由等比數(shù)列的通項公式可得an-1,移項可得.

解答 (1)證明:∵數(shù)列{an}滿足Sn=n-an
∴Sn+1=n+1-an+1,兩式相減可得
Sn+1-Sn=(n+1)-n-an+1+an,
∴an+1=1-an+1+an,∴an+1=$\frac{1}{2}$+$\frac{1}{2}$an,
∴$\frac{{a}_{n+1}-1}{{a}_{n}-1}$=$\frac{\frac{1}{2}+\frac{1}{2}{a}_{n}-1}{{a}_{n}-1}$=$\frac{\frac{1}{2}({a}_{n}-1)}{{a}_{n}-1}$=$\frac{1}{2}$,
∴數(shù)列{an-1}是$\frac{1}{2}$為公比的等比數(shù)列;
(2)由(1)可得數(shù)列{an-1}是$\frac{1}{2}$為公比的等比數(shù)列,
由Sn=n-an可得a1=S1=1-a1,解得a1=$\frac{1}{2}$,故a1-1=-$\frac{1}{2}$,
∴an-1=-$\frac{1}{2}$×($\frac{1}{2}$)n-1=($\frac{1}{2}$)n,∴an=1+($\frac{1}{2}$)n

點評 本題考查等比數(shù)列的證明和數(shù)列的遞推公式,屬中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.據(jù)下列各無窮數(shù)列的前5項,寫出數(shù)列的一個通項公式:
(1)-1,$\frac{1}{8}$,-$\frac{1}{27}$,$\frac{1}{64}$,-$\frac{1}{125}$,…;
(2)$\frac{3}{5}$,$\frac{4}{8}$,$\frac{5}{11}$,$\frac{6}{14}$,$\frac{7}{17}$,….

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.用五點法畫出y=$\frac{1}{2}$sin(2x-$\frac{π}{3}$)在一個周期內(nèi)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.集合A={x|ax2-2x+1=0}只有一個元素,求實數(shù)a的值及A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.己知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{5x+3y≤15}\\{y≤x+1}\\{x-5y≤3}\end{array}\right.$,若目標函數(shù)z=3x+ay在點A($\frac{3}{2}$,$\frac{5}{2}$)取得最大值,則a的取值范圍是($\frac{9}{5},+∞$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知x>0,y>0,xy-x-2y+$\frac{3}{2}$=0,則x+2y的取值范圍是( 。
A.(0,2]∪[6,+∞)B.(0,$\frac{3}{2}$]∪[6,+∞)C.($\frac{3}{2}$,2]∪[6,+∞)D.[6,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若復(fù)數(shù)z1=3+2i,z2=1-i,則|z1+$\frac{2}{{z}_{2}}$|=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=2ax2-x3(a>1)在區(qū)間(0,1]上是增函數(shù),則實數(shù)a的取值范圍是[$\frac{3}{4},+∞$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=x3+ax2+bx+c,下列結(jié)論中錯誤的是(  )
A.?x0∈R,f(x0)=0
B.若x0是f(x)的極小值點,則f(x)在區(qū)間(-∞,x0)上單調(diào)遞減
C.函數(shù)f(x)的圖象是中心對稱圖形
D.若x0是f(x)的極值點,則f′(x0)=0

查看答案和解析>>

同步練習冊答案