如圖,在棱長為l的正方體ABCD-A1B1C1D1中,M為CC1中點.
(1)求點M到面A1BD距離的大小;
(2)求四面體A1-BDM的體積.

【答案】分析:(1)取BD的中點O,連接A1O,MO后,我們根據(jù)等腰三角形的性質(zhì)、勾股定理及線面垂直的判定定理,得到MO的長即為點M到面A1BD距離.
(2)根據(jù)(1)的結(jié)論,將(1)中所求出各相關(guān)線段的長代入三棱錐的體積公式,即可得到答案.
解答:解:(1)已知如圖所示:
取BD的中點O,連接A1O,MO
∵正方體ABCD-A1B1C1D1的棱長為1,M為CC1中點
則易得:A1O=,MO=,A1M=
由勾股定理得:∠A1OM為直角
則M到面A1BD距離的大小為(6分)
(2)由(1)可知A1O⊥面BDM,
從而四面體A1-BDM體積
(12分)
點評:本題考查的知識點是棱錐的體積,及空間點、線、面之間的距離運算,其中作輔助線后根據(jù)等腰三角形的性質(zhì)、勾股定理及線面垂直的判定定理,得到∠A1OM為直角,是解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•溫州一模)如圖,直線l⊥平面α,垂足為O,正四面體ABCD的棱長為4,C在平面α內(nèi),B是直線l上的動點,則當O到AD的距離為最大時,正四面體在平面α上的射影面積為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當平面OBC繞l順時針旋轉(zhuǎn)與平面α第一次重合時,求平面OBC轉(zhuǎn)過角的正弦
值.
(2)在上述旋轉(zhuǎn)過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當AO⊥平面α時,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年安徽省合肥八中高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當平面OBC繞l順時針旋轉(zhuǎn)與平面α第一次重合時,求平面OBC轉(zhuǎn)過角的正弦
值.
(2)在上述旋轉(zhuǎn)過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當AO⊥平面α時,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年江西省贛州三中、于都中學高三聯(lián)合考試數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當平面OBC繞l順時針旋轉(zhuǎn)與平面α第一次重合時,求平面OBC轉(zhuǎn)過角的正弦
值.
(2)在上述旋轉(zhuǎn)過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當AO⊥平面α時,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京大學附中高三數(shù)學提高練習試卷(4)(解析版) 題型:解答題

如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當平面OBC繞l順時針旋轉(zhuǎn)與平面α第一次重合時,求平面OBC轉(zhuǎn)過角的正弦
值.
(2)在上述旋轉(zhuǎn)過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當AO⊥平面α時,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

查看答案和解析>>

同步練習冊答案