6.在鈍角△ABC中a<b<c,且a=2,b=3,則c的取值范圍是$(\sqrt{13},5)$.

分析 由在鈍角△ABC中a<b<c,可得C為鈍角.因此cosC=$\frac{{2}^{2}+{3}^{2}-{c}^{2}}{2×2×3}$<0,2+3>c,即可得出.

解答 解:由在鈍角△ABC中a<b<c,∴C為鈍角.
∴cosC=$\frac{{2}^{2}+{3}^{2}-{c}^{2}}{2×2×3}$<0,2+3>c,
解得$\sqrt{13}<c<$5.
故答案為:$(\sqrt{13},5)$.

點評 本題考查了余弦定理、三角形三邊大小關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.為了了解某學(xué)校高二年級學(xué)生的物理成績,從中抽取n名學(xué)生的物理成績(百分制)作為樣本,按成績分成5組:[50,60),[60,70),[70,80),[80,90),[90,100],頻率分布直方圖如圖所示,成績落在[70,80)中的人數(shù)為20.
(1)求a和n的值;
(2)根據(jù)樣本估計總體的思想,估計該校高二學(xué)生物理成績的平均數(shù)$\overline x$和中位數(shù)m;
(3)成績在80分以上(含80分)為優(yōu)秀,樣本中成績落在[50,80)中的男、女人數(shù)比為1:2,成績落在[80,100]中的男、女生人數(shù)比為3:2,完成下列表格.
男生女生合計
優(yōu)  秀
不優(yōu)秀
合 計

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知sin(α+$\frac{π}{3}$)=-$\frac{1}{2}$,α∈(0,π),則cosα=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,角A、B、C所對的邊分別是a、b、c,若$a=\sqrt{6}$,b=2,A=60°,則B=(  )
A.30°B.45°C.135°D.45°或135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an}的前項和為Sn,且a3=7,S3=12.
(1)求數(shù)列{an}的通項公式;
(2)求{an}的前項和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)f(x)為定義在R上的奇函數(shù),當x≥0時,f(x)=3x+1-3,則f(-1)的值為( 。
A.-6B.-3C.-2D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知平面向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(-2,m)$,且$\overrightarrow a∥\overrightarrow b$,則m等于( 。
A.4B.3C.-4D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1+lo{g}_{4}x,x≥4}\\{f({x}^{2}),x<4}\end{array}\right.$,則f(3)+f(4)=3+log49.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x+$\frac{1}{2}$)為奇函數(shù),設(shè)g(x)=f(x)+1,則g($\frac{1}{2016}$)+g($\frac{2}{2016}$)+…+g($\frac{2015}{2016}$)=2015.

查看答案和解析>>

同步練習(xí)冊答案