【題目】已知四邊形ABCD為矩形,AB=2AD=4,MAB的中點,將△ADM沿DM折起,得到四棱錐A1DMBC,設A1C的中點為N,在翻折過程中,得到如下有三個命題:BN∥平面A1DM;②三棱錐NDMC的最大體積為;③在翻折過程中,存在某個位置,使得DMA1C.其中正確命題的序號為_____.

【答案】①②

【解析】

分別延長DM,CB交于H,連接A1H,可證BCH的中點,因此有BNA1H,可得①為正確;要使三棱錐NDMC的體積最大,只需N到平面DMBC的距離最大,當平面A1DM⊥平面DMBC時滿足,可求得此時體積為,②正確;DM=CM=2CD=4,

可得DMMC,若DMA1C,可證DMA1M,與已知DM為斜邊矛盾,③錯誤.

對于①,分別延長DM,CB交于H,連接A1H,如圖所示;

由已知得,可得BCH的中點,

可得BN為△A1CH的中位線,可得BNA1H,

BN平面A1DMA1H平面A1DM,

可得BN∥平面A1DM∴①正確;

對于②,當平面A1DM⊥平面DMBC時,

A1到平面DMBC的距離最大,且為,

此時N到平面DMBC的距離最大,且為

DMC的面積為2×4=4,

可得三棱錐NDMC的最大體積為4,

∴②正確;

對于③,若DMA1C,又DM=CM=2,CD=4,

可得DMMC,則DM⊥平面A1CM,即有DMA1M,

這與DM為斜邊矛盾,∴③錯誤;

綜上,以上正確命題的序號為①②.

故答案為:①②.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在下列向量組中,可以把向量=(3,2)表示出來的是(   )

A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)

C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)的定義域為,如果存在非零常數(shù),對于任意,都有,則稱函數(shù)似周期函數(shù),非零常數(shù)為函數(shù)似周期.現(xiàn)有下面四個關于似周期函數(shù)的命題:

如果似周期函數(shù)似周期-1,那么它是周期為2的周期函數(shù);

函數(shù)似周期函數(shù)

函數(shù)似周期函數(shù);

如果函數(shù)似周期函數(shù),那么

其中是真命題的序號是 .(寫出所有滿足條件的命題序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是數(shù)列的前項和,對任意都有成立(其中是常數(shù)).

1)當時,求

2)當時,

①若,求數(shù)列的通項公式:

②設數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是數(shù)列,如果,試問:是否存在數(shù)列數(shù)列,使得對任意,都有,且,若存在,求數(shù)列的首項的所有取值構成的集合;若不存在.說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中,若點(異于點)是棱上一點,則滿足所成的角為的點的個數(shù)為( )

A.0B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C的參數(shù)方程為(t為參數(shù)),以原點O為極點,x軸的非負半軸為極軸建立極坐標系,過極點的兩直線l1l2相互垂直,與曲線C分別相交于A,B兩點(不同于點O),且l1的傾斜角為.

1)求曲線C的極坐標方程和直線l2的直角坐標方程;

2)求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(數(shù)學文卷·2017屆重慶十一中高三12月月考第16題) 現(xiàn)介紹祖暅原理求球體體積公式的做法:可構造一個底面半徑和高都與球半徑相等的圓柱,然后在圓柱內(nèi)挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,用這樣一個幾何體與半球應用祖暅原理(圖1),即可求得球的體積公式.請研究和理解球的體積公式求法的基礎上,解答以下問題:已知橢圓的標準方程為 ,將此橢圓繞y軸旋轉一周后,得一橄欖狀的幾何體(圖2),其體積等于______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高鐵是我國國家名片之一,高鐵的修建凝聚著中國人的智慧與汗水.如圖所示,B、E、F為山腳兩側共線的三點,在山頂A處測得這三點的俯角分別為、,計劃沿直線BF開通穿山隧道,現(xiàn)已測得BC、DEEF三段線段的長度分別為3、12.

(1)求出線段AE的長度;

(2)求出隧道CD的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義上的函數(shù),若滿足:對任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界.

(1)設,判斷上是否有界函數(shù),若是,請說明理由,并寫出的所有上界的值的集合,若不是,也請說明理由;

(2)若函數(shù)上是以3為上界的有界函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案