分析 平移CB1到A處,由已知得∠B1CA=30°,∠B1AC=150°,0≤∠C1AC≤20°,由此能求出直線B1C與直線AC1所成角的取值范圍.
解答 解:∵在△ABC中,∠BAC=10°,∠ACB=30°,
將直線BC繞AC旋轉(zhuǎn)得到B1C,直線AC繞AB旋轉(zhuǎn)得到AC1,
如圖,平移CB1到A處,B1C繞AC旋轉(zhuǎn),
∴∠B1CA=30°,∠B1AC=150°,
AC1繞AB旋轉(zhuǎn),∴0°≤∠C1AC≤2∠CAB,
∴0≤∠C1AC≤20°,
設(shè)直線B1C與直線AC1所成角為α,
則∠B1AC-∠C1AC≤α≤∠B1AC+∠C1AC,
∵130°≤∠B1AC-∠C1AC≤150°,
150°≤∠B1AC+∠C1AC≤170°,
∴10°≤α≤50°或130°≤α≤170°(舍).
故答案為:[10°,50°].
點評 本題考查兩直線所成角的取值的求法,解題時要認真審題,注意旋轉(zhuǎn)性質(zhì)的合理運用,是難題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[\frac{5}{4},+∞)$ | B. | $(1,\frac{5}{4}]$ | C. | $[\frac{7}{4},+∞)$ | D. | $(1,\frac{7}{4})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(sinα)>f(cosβ) | B. | f(sinα)<f(cosβ) | ||
C. | f(sinα)=f(cosβ) | D. | 以上情況均有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ① | B. | ② | C. | ③ | D. | ④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 45° | B. | 60° | C. | 120° | D. | 135° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{6}$ | B. | 2$\sqrt{7}$ | C. | $\sqrt{14}$ | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com