已知數(shù)列數(shù)學公式,則6是該數(shù)列的


  1. A.
    第10項
  2. B.
    第11項
  3. C.
    第12項
  4. D.
    第13項
C
分析:由數(shù)列所給的前幾幾項可以變?yōu)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/100462.png' />把每一項與其對應(yīng)的項數(shù)發(fā)生聯(lián)系后即可求出數(shù)列的通向公式進而可以求解.
解答:因為數(shù)列所給的前幾幾項可以變?yōu)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/100462.png' />,
所以此數(shù)列的通向公式利用觀察法得:,
利用方程的思想,令,
解可得n=12.
故選C.
點評:此題考查了利用觀察法求數(shù)列的通項公式及利用方程的思想進行求解.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

14、已知數(shù)列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性質(zhì)P:對任意i,j(1≤i≤j≤n),aj+ai與aj-ai兩數(shù)中至少有一個是該數(shù)列中的一項.現(xiàn)給出以下四個命題:
①數(shù)列0,1,3具有性質(zhì)P;
②數(shù)列0,2,4,6具有性質(zhì)P;
③若數(shù)列A具有性質(zhì)P,則a1=0;
④若數(shù)列a1,a2,a3(0≤a1<a2<a3)具有性質(zhì)P,則a1+a3=2a2
其中真命題有
②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

8、已知數(shù)列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性質(zhì)P:對任意i,j(1≤i≤j≤n),aj+ai與aj-ai兩數(shù)中至少有一個是該數(shù)列中的一項、現(xiàn)給出以下四個命題:①數(shù)列0,1,3具有性質(zhì)P;②數(shù)列0,2,4,6具有性質(zhì)P;③若數(shù)列A具有性質(zhì)P,則a1=0;④若數(shù)列a1,a2,a3(0≤a1<a2<a3)具有性質(zhì)P,則a1+a3=2a2,其中真命題有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•濰坊二模)已知數(shù)列an=2n-1(n∈N*),把數(shù)列{an}的各項排成如圖所示的三角形數(shù)陣,記(m,n)表示該數(shù)陣中第m行中從左到右的第n個數(shù),則S(10,6)對應(yīng)于數(shù)陣中的數(shù)是
101
101

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖北模擬)已知數(shù)列A:a1,a2,…,an(0≤a1<a2<…an,n≥3)具有性質(zhì)P;對任意i,j(1≤i≤j≤n),aj+ai與aj-ai兩數(shù)中至少有一個是該數(shù)列中的一項,現(xiàn)給出以下四個命題:
①數(shù)列0,2,4,6具有性質(zhì)P;
②若數(shù)列A具有性質(zhì)P,則a1=0;
③若數(shù)列A具有性質(zhì)P且a1≠0an-an-k=ak(k=1,2,…,(n-1);
④若數(shù)列a1,a2,a3(0≤a1<a2<a3)具有性質(zhì)P,則a3=a1+a2
其中真命題有( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年重慶一中高二(下)4月月考數(shù)學試卷(理科)(解析版) 題型:填空題

已知數(shù)列an=2n-1(n∈N*),把數(shù)列{an}的各項排成如圖所示的三角形數(shù)陣,記(m,n)表示該數(shù)陣中第m行中從左到右的第n個數(shù),則S(10,6)對應(yīng)于數(shù)陣中的數(shù)是   

查看答案和解析>>

同步練習冊答案