已知函數(shù)為常數(shù)),其圖象是曲線
(1)當(dāng)時(shí),求函數(shù)的單調(diào)減區(qū)間;
(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,若存在唯一的實(shí)數(shù),使得同時(shí)成立,求實(shí)數(shù)的取值范圍;
(3)已知點(diǎn)為曲線上的動(dòng)點(diǎn),在點(diǎn)處作曲線的切線與曲線交于另一點(diǎn),在點(diǎn)處作曲線的切線,設(shè)切線的斜率分別為.問:是否存在常數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說明理由.

 (1);(2);(3)當(dāng)時(shí),存在常數(shù),使;當(dāng)時(shí),不存在常數(shù),使.

解析試題分析:(1)這是一個(gè)求函數(shù)單調(diào)遞減區(qū)間的問題,比較簡單,可以通過導(dǎo)數(shù)的符號(hào)去判斷;(2)這是一個(gè)兩方程有公共解且公共解唯一的問題,消去參數(shù)后就轉(zhuǎn)化為含有參數(shù)的關(guān)于未知數(shù)的三次方程有唯一解的問題,可利用三次函數(shù)的圖象判斷;(3)可設(shè),然后把點(diǎn)的坐標(biāo)和都用表示,再考察關(guān)于的等式恒成立,從而去確定常數(shù)是否存在.
試題解析:(1)當(dāng)時(shí), .             2分
令f ¢(x)<0,解得,f(x)的單調(diào)減區(qū)間為.          4分
(2)
由題意知消去,得有唯一解.  6分
,則
在區(qū)間,上是增函數(shù),在上是減函數(shù),   8分
,,
故實(shí)數(shù)的取值范圍是.               10分
(3) 設(shè),則點(diǎn)處切線方程為,
與曲線聯(lián)立方程組,得,即,所以點(diǎn)的橫坐標(biāo).         12分
由題意知,,,
若存在常數(shù),使得,則
即常數(shù),使得
所以常數(shù),使得解得常數(shù),使得,.    15分
故當(dāng)時(shí),存在常數(shù),使;當(dāng)時(shí),不存在常數(shù),使.16分
考點(diǎn):函數(shù)與方程、導(dǎo)數(shù)的綜合應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=aln xax-3(a∈R).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)yf(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3x2 (f′(x)是f(x)的導(dǎo)函數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(3)求證:×…×< (n≥2,n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為函數(shù)圖象上一點(diǎn),為坐標(biāo)原點(diǎn),記直線的斜率
(Ⅰ)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(Ⅱ)如果對(duì)任意的,,有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若,求在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng)有兩個(gè)極值點(diǎn)(設(shè)為)時(shí),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)時(shí)取得極值.
(1)求a、b的值;(2)若對(duì)于任意的,都有成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若,恒成立,求實(shí)數(shù)的最小值;
(3)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分)己知函數(shù)f (x)=ex,xR
(1)求 f (x)的反函數(shù)圖象上點(diǎn)(1,0)處的切線方程。
(2)證明:曲線y=f(x)與曲線y=有唯一公共點(diǎn);
(3)設(shè),比較的大小,并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)若曲線在它們的交點(diǎn)處有相同的切線,求實(shí)數(shù)、的值;
(2)當(dāng)時(shí),若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案