數(shù)列{an}滿足a1=0,an+1+an=2n,求數(shù)列{an}的通項(xiàng)公式
an=
n-1,n為奇數(shù)
n,n為偶數(shù)
an=
n-1,n為奇數(shù)
n,n為偶數(shù)
分析:再寫一式,兩式相減,確定數(shù)列{an}奇數(shù)項(xiàng)組成以0為首項(xiàng),2為公差的等差數(shù)列;偶數(shù)項(xiàng)組成以2為首項(xiàng),2為公差的等差數(shù)列,從而可得結(jié)論.
解答:解:∵an+1+an=2n①,∴n≥2時(shí),an+an-1=2(n-1)②
①-②可得an+1-an-1=2
∵a1=0,an+1+an=2n,∴a2=2
∴數(shù)列{an}奇數(shù)項(xiàng)組成以0為首項(xiàng),2為公差的等差數(shù)列;偶數(shù)項(xiàng)組成以2為首項(xiàng),2為公差的等差數(shù)列
∴an=
n-1,n為奇數(shù)
n,n為偶數(shù)

故答案為:an=
n-1,n為奇數(shù)
n,n為偶數(shù)
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查等差數(shù)列的通項(xiàng),考查分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)b>0,數(shù)列{an}滿足a1=b,an=
nban-1an-1+n-1
(n≥2)
(1)求數(shù)列{an}的通項(xiàng)公式;
(4)證明:對(duì)于一切正整數(shù)n,2an≤bn+1+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足a1=1,a2=2,an=
an-1an-2
(n≥3)
,則a17等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,數(shù)列{an}滿足a1=a,an+1=a+
1
an
,n=1,2,….

(I)已知數(shù)列{an}極限存在且大于零,求A=
lim
n→∞
an
(將A用a表示);
(II)設(shè)bn=an-A,n=1,2,…,證明:bn+1=-
bn
A(bn+A)
;
(III)若|bn|≤
1
2n
對(duì)n=1,2,…
都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=1,an=
12
an-1+1(n≥2)

(1)若bn=an-2,求證{bn}為等比數(shù)列;    
(2)求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=
4
3
,an+1=an2-an+1(n∈N*),則m=
1
a1
+
1
a2
+…+
1
a2013
的整數(shù)部分是(  )

查看答案和解析>>

同步練習(xí)冊答案