(本小題滿(mǎn)分14分)
(Ⅰ) 已知?jiǎng)狱c(diǎn)到點(diǎn)與到直線(xiàn)的距離相等,求點(diǎn)的軌跡的方程;
(Ⅱ) 若正方形的三個(gè)頂點(diǎn),()在(Ⅰ)中的曲線(xiàn)上,設(shè)的斜率為,,求關(guān)于的函數(shù)解析式;
(Ⅲ) 求(2)中正方形面積的最小值。
(Ⅰ)動(dòng)點(diǎn)的軌跡方程為
(Ⅱ)
(Ⅲ),即的最小值為,當(dāng)且僅當(dāng)時(shí)取得最小值.
解:(Ⅰ) 由題設(shè)可得動(dòng)點(diǎn)的軌跡方程為.       ………………4分
(Ⅱ)由(1),可設(shè)直線(xiàn)的方程為:,………5分
得,
易知、為該方程的兩個(gè)根,故有,得,
從而得,  ……………………6分
類(lèi)似地,可設(shè)直線(xiàn)的方程為:,………………7分
從而得,                ……………………8分
,得,解得,                                         
.     ……………………10分
(Ⅲ)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231619543581504.gif" style="vertical-align:middle;" />,……………12分
所以,即的最小值為,當(dāng)且僅當(dāng)時(shí)取得最小值.……14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分)
已知點(diǎn)A(2,0),. P為上的動(dòng)點(diǎn),線(xiàn)段BP上的點(diǎn)M滿(mǎn)足|MP|=|MA|.
 。á瘢┣簏c(diǎn)M的軌跡C的方程;
 。á颍┻^(guò)點(diǎn)B(-2,0)的直線(xiàn)與軌跡C交于S、T兩點(diǎn),且,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如右圖所示,“嫦娥一號(hào)”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月
球附近一點(diǎn)P變軌進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道Ⅰ繞月飛
行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)的橢圓軌道Ⅱ
繞月飛行,最終衛(wèi)星在P點(diǎn)第三次變軌進(jìn)入以F為圓心的圓形軌道Ⅲ
繞月飛行,若用分別表示橢軌道Ⅰ和Ⅱ的焦距,用
分別表示橢圓軌道Ⅰ和Ⅱ的長(zhǎng)軸的長(zhǎng),給出下列式子:
 ②、    ④.
其中正確式子的序號(hào)是 (    )
A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
已知與曲線(xiàn)y軸于、
為原點(diǎn)。
(1)求證:;
(2)求線(xiàn)段AB中點(diǎn)的軌跡方程;
(3)求△AOB面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是圓上滿(mǎn)足條件的兩個(gè)點(diǎn),其中O是坐標(biāo)原點(diǎn),分別過(guò)A、B作軸的垂線(xiàn)段,交橢圓點(diǎn),動(dòng)點(diǎn)P滿(mǎn)足.(1)求動(dòng)點(diǎn)P的軌跡方程;(2)設(shè)分別表示的面積,當(dāng)點(diǎn)P在軸的上方,點(diǎn)A在軸的下方時(shí),求+的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分16分)
如圖,已知拋物線(xiàn)的焦點(diǎn)為,是拋物線(xiàn)上橫坐標(biāo)為8且位于軸上方的點(diǎn). 到拋物線(xiàn)準(zhǔn)線(xiàn)的距離等于10,過(guò)垂直于軸,垂足為,的中點(diǎn)為為坐標(biāo)原點(diǎn)).
(Ⅰ)求拋物線(xiàn)的方程;
(Ⅱ)過(guò),垂足為,求點(diǎn)的坐標(biāo);
(Ⅲ)以為圓心,4為半徑作圓,點(diǎn)軸上的一個(gè)動(dòng)點(diǎn),試討論直線(xiàn)與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分)已知點(diǎn),直線(xiàn),為平面上的動(dòng)點(diǎn),過(guò)點(diǎn)作直線(xiàn)的垂線(xiàn),垂足為,且
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)已知圓過(guò)定點(diǎn),圓心在軌跡上運(yùn)動(dòng),且圓軸交于、兩點(diǎn),設(shè),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線(xiàn)關(guān)于直線(xiàn)對(duì)稱(chēng)的曲線(xiàn)方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知曲線(xiàn)C:,點(diǎn)及點(diǎn),從A點(diǎn)觀(guān)察點(diǎn)B,要使視線(xiàn)不被曲線(xiàn)C擋住,則實(shí)數(shù)a的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案