(12分)(2010·無錫模擬)已知f(x)在定義域(0,+∞)上為增函數(shù),且滿足f(xy)=f(x)+f(y),f(3)=1,試解不等式f(x)+f(x-8)≤2.

解 根據(jù)題意,由f(3)=1,得f(9)=f(3)+f(3)=2.
又f(x)+f(x-8)=f[x(x-8)],故f[x(x-8)]≤f(9).
∵f(x)在定義域(0,+∞)上為增函數(shù),

∴原不等式的解集為{x|8<x≤9}.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)定義在R上的增函數(shù)y=f(x)對任意x,yR都有f(x+y)=f(x)+f(y),則
(1)求f(0)       (2) 證明:f(x)為奇函數(shù)
(3)若對任意恒成立,求實(shí)數(shù)k的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


(本小題滿分12分)
(1)求的定義域;
(2)問是否存在實(shí)數(shù)、,當(dāng)時,的值域為,且 若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(理科)已知函數(shù)=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若y=f(x)在[-1,1]上存在零點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)若函數(shù)y=f(x)(x∈[t,4])的值域為區(qū)間D,是否存在常數(shù)t,使區(qū)間D的長度為7-2t?若存在,求出t的值;若不存在,請說明理由(注:區(qū)間[p,q]的長度為q-p).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
某出版公司為一本暢銷書定價如下:.這里n表示定購書
的數(shù)量,C(n)是定購n本書所付的錢數(shù)(單位:元)
(1)有多少個n,會出現(xiàn)買多于n本書比恰好買n本書所花錢少?
(2)若一本書的成本價是5元,現(xiàn)有兩人來買書,每人至少買1本,兩人共買60本,問出版公司至少能賺多少錢?最多能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品, 根據(jù)市場調(diào)查與預(yù)測, 甲產(chǎn)品
的利潤與投資成正比, 其關(guān)系如圖1, 乙產(chǎn)品的利潤與投資的算術(shù)平方根成正比, 其關(guān)系如
圖2 (注: 利潤與投資的單位: 萬元).
(Ⅰ) 分別將甲、乙兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(Ⅱ) 該企業(yè)籌集了100萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品, 問: 怎樣分配這100萬元資金, 才能使企業(yè)獲得最大利潤, 其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分)已知f(x)是定義在[—1,1]上的奇函數(shù),且f (1)=1,若m,n∈[—
1,1],m+n≠0時有
(1)判斷f (x)在[—1,1]上的單調(diào)性,并證明你的結(jié)論;
(2)解不等式:;
(3)若f (x)≤對所有x∈[—1,1],∈[—1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

函數(shù)的定義域為開區(qū)間,導(dǎo)函數(shù)內(nèi)的圖象如圖所示,則函數(shù)在開區(qū)間內(nèi)有極小值點(diǎn)(  )

A.個 B.個 C.個 D.個 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)函數(shù)f(x)=+ln x,則(  )

A.x=為f(x)的極大值點(diǎn)B.x=為f(x)的極小值點(diǎn)
C.x=2為f(x)的極大值點(diǎn)D.x=2為f(x)的極小值點(diǎn)

查看答案和解析>>

同步練習(xí)冊答案