已知定義域?yàn)閇0,1]的函數(shù)f(x)同時(shí)滿足以下三個(gè)條件:
Ⅰ.對(duì)任意的x∈[0,1],總有f(x)≥0;Ⅱ.f(1)=1;Ⅲ.若x1≥0,x2≥0,且x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)成立.則稱f(x)為“友誼函數(shù)”,請(qǐng)解答下列各題:
(1)若已知f(x)為“友誼函數(shù)”,求f(0)的值;
(2)函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否為“友誼函數(shù)”?并給出理由.
(1)取x1=x2=0,代入f(x1+x2)≥f(x1)+f(x2),
得f(0)≥f(0)+f(0),化簡(jiǎn)可得f(0)≤0
又由f(0)≥0,得f(0)=0
(2)顯然g(x)=2x-1在[0,1]上滿足[Ⅰ]g(x)≥0;[Ⅱ]g(1)=1.
若x1≥0,x2≥0,且x1+x2≤1,則有
g(x1+x2)-[g(x1)+g(x2)]=2x1+x2-1-[(2x1-1)+(2x2-1)]=(2x2-1)(2x1-1)≥0
故g(x)=2x-1滿足條件[1]、[2]、[3],所以g(x)=2x-1為友誼函數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)閇0,1]的函數(shù)f(x)同時(shí)滿足:
①對(duì)于任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2).
(1)求f(0)的值;
(2)求f(x)的最大值;
(3)若對(duì)于任意x∈[0,1],總有4f2(x)-4(2-a)f(x)+5-4a≥0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)閇0,1]的函數(shù)f(x)同時(shí)滿足以下三個(gè)條件:
①對(duì)任意的x∈[0,1],總有f(x)≥0; 
②f(1)=1;
③若x1≥0,x2≥0且x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)成立,并且稱f(x)為“友誼函數(shù)”,
請(qǐng)解答下列各題:
(1)若已知f(x)為“友誼函數(shù)”,求f(0)的值;
(2)函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否為“友誼函數(shù)”?并給出理由.
(3)已知f(x)為“友誼函數(shù)”,且 0≤x1<x2≤1,求證:f(x1)≤f(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)閇0,1]的函數(shù)f(x)同時(shí)滿足:
①對(duì)于任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若0≤x1≤1,0≤x2≤1,x1+x2≤1,則有f (x1+x2)≥f (x1)+f (x2).
(1)試求f(0)的值;
(2)試求函數(shù)f(x)的最大值;
(3)試證明:當(dāng)x∈(
1
2n
,
1
2n-1
]
,n∈N+時(shí),f(x)<2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)閇0,1]的函數(shù)同時(shí)滿足以下三個(gè)條件:①對(duì)任意x∈[0,1],總有f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)成立.
(1)求f(0)的值;
(2)函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否同時(shí)適合①②③?并予以證明;
(3)假定存在x0∈[0,1],使得f(x0)∈[0,1],且f(f(x0))=x0,求證:f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)閇0,1]的函數(shù)f (x)同時(shí)滿足:
①對(duì)于任意的x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若0≤x1≤1,0≤x2≤1,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2).
(1)試求f(0)的值;
(2)試求函數(shù)f (x)的最大值;
(3)試證明:當(dāng)x∈(
1
4
,
1
2
]
時(shí),f(x)<2x.

查看答案和解析>>

同步練習(xí)冊(cè)答案